Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T05:52:59.779Z Has data issue: false hasContentIssue false

Linear stability of the regular N-gon periodic solutions for the planar N-body problem with quasi-homogeneous potential

Published online by Cambridge University Press:  16 January 2025

Alex Castillo
Affiliation:
Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, VIII-Región, Chile e-mail: [email protected] [email protected]
Paulina Martínez
Affiliation:
Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, VIII-Región, Chile e-mail: [email protected] [email protected]
Claudio Vidal*
Affiliation:
Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, VIII-Región, Chile e-mail: [email protected] [email protected]

Abstract

This paper considers the planar N-body problem with a quasi-homogeneous potential given by

$$ \begin{align*}W = \sum_{1\leq k<j\leq N} \left[ \frac{ m_k m_j}{\|\boldsymbol{r}_k-\boldsymbol{r}_j\|} +\frac{m_k m_j C_{jk}}{\|\boldsymbol{r}_k-\boldsymbol{r}_j\|^p} \right], \end{align*} $$

where $ m_k>0 $ are the masses and $C_{jk}= C_{kj}$ are nonzero real constants, and the exponent g being $ p> $1. Generalizing techniques of the classical N-body problem, we first characterize the periodic solutions that form a regular polygon (relative equilibria) with equal masses ($m_k= m$, $k=1, \ldots , N$) and equal constants $C_{jk}= C$, for all $j, k=1, \ldots , N$ (for short, N-gon solutions). Indeed, for $C>0$ we prove that there exists a unique regular N-gon solution for each fixed positive mass m. In contrast, for the case $C <0$, we demonstrate that there can be a maximum of two distinct regular N-gon solutions for a fixed positive mass m. More precisely, there is a range of values for the mass parameter m for which no solutions of the form of an N-gon exist. Furthermore, we examine the linear stability of these solutions, with a particular focus on the special case $ N=3 $, which is fully characterized.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Claudio Vidal was partially supported by project Fondecyt 1220628. Paulina Martínez and Claudio Vidal belong to “Grupo de Investigación en Ecuaciones Diferenciales Ordinarias y Aplicaciones,” GI2310532–Universidad del Bío-Bío.

References

Arribas, M., Elipe, A., Kalvouridis, T., and Palacios, M., Homographic solutions in the planar $n+1$ body problem with quasi-homogeneous potentials. Celestial Mech. Dyn. Astr. 99(2007), 112.CrossRefGoogle Scholar
Diacu, F., Near-collision dynamics for particle systems with quasihomogeneous potentials . J. Differential Equations 128(1996), no. 1, 5877.CrossRefGoogle Scholar
Diacu, F., Singularities of the N-body problem . In: Classical and celestial mechanics (Recife, 1993/1999), Princeton University Press, Princeton, NJ, 2002, pp. 3562.Google Scholar
Diacu, F., Mioc, V., and Stoica, C., Phase-space structure and regularization of Manev-type problems . Nonlinear Anal. 41(2000), 10291055.CrossRefGoogle Scholar
Manev, G., Le principe de la moindre action et la gravitation . C. R. Acad. Sci. Paris 190(1993), 963965.Google Scholar
Maxwell, J., Stability of the motion of Saturn’s rings . In: Niven, W. D. (ed.), The scientific papers of James Clerk Maxwell, Cambridge University Press, Cambridge, 1890, 297304.Google Scholar
Mioc, V. and Blaga, C., A class of relative equilibria in the Manev five-body problem . Hvar Observ. Bull. 23(1999), 4148.Google Scholar
Moeckel, R., Linear stability analysis of some symmetrical classes of relative equilibria . In: Hamiltonian dynamical systems (Cincinnati, OH, 1992), IMA Vol. Math. Appl., 63, Springer, New York, 1995, pp. 291317.CrossRefGoogle Scholar
Perko, L. and Walter, L., Regular polygon solutions of the $N$ -body problem . Amer. Math. Soc. 94(1995), no. 2, 301309.Google Scholar
Santoprete, M., Linear stability of the Lagrangian triangle solutions for quasihomogeneous potentials . Celestial Mech. Dyn. Astr. 94(2006), 1735.CrossRefGoogle Scholar
Ureche, V., Perihelion advance and Manev’s field . Studia Univ. Babes-Bolyai, Math. 44(1999), 101109.Google Scholar
Wintner, A., The analytical foundations of celestial mechanics, Princeton University Press, Princeton, NJ; Geoffrey Cumberlege Oxford University Press, London, 2nd ed., 1947.Google Scholar