Published online by Cambridge University Press: 20 November 2018
Let
${{p}_{w}}(n)$
be the weighted partition function defined by the generating function
$\Sigma _{n=0}^{\infty }{{p}_{w}}(n){{x}^{n}}=\prod{_{m=1}^{\infty }{{(1-{{x}^{m}})}^{-w(m)}}}$
, where
$w\left( m \right)$ is a non-negative arithmetic function. Let
${{P}_{w}}(u)={{\Sigma }_{n\le u}}{{p}_{w}}(n)\,and\,{{N}_{w}}(u)={{\Sigma }_{n\le u}}w(n)$
be the summatory functions for
${{p}_{w}}(n)$
and
$w\left( n \right)$, respectively. Generalizing results of G. A. Freiman and E. E. Kohlbecker, we show that, for a large class of functions
$\Phi \left( u \right)$ and
$\text{ }\!\!\lambda\!\!\text{ }\left( u \right)$, an estimate for
${{P}_{w}}\left( u \right)$ of the form log
${{P}_{w}}(u)=\Phi (u)\{1+Ou(1/\lambda (u))\}$
$\left( u\to \infty \right)$ implies an estimate for
${{N}_{w}}(u)$
of the form
${{N}_{w}}(u)={{\Phi }^{*}}(u)\{1+O(1/\log \lambda (u))\}$
$\left( u\to \infty \right)$ with a suitable function
${{\Phi }^{*}}(u)$
defined in terms of
$\Phi \left( u \right)$. We apply this result and related results to obtain characterizations of the Riemann Hypothesis and the Generalized Riemann Hypothesis in terms of the asymptotic behavior of certain weighted partition functions.