Hostname: page-component-6bf8c574d5-w79xw Total loading time: 0 Render date: 2025-02-19T21:46:33.673Z Has data issue: false hasContentIssue false

The imprimitivity Fell bundle

Published online by Cambridge University Press:  06 February 2025

Anna Duwenig*
Affiliation:
KU Leuven, Department of Mathematics, Leuven, Belgium [email protected]

Abstract

Given a full right-Hilbert $\mathrm {C}^{*}$-module $\mathbf {X}$ over a $\mathrm {C}^{*}$-algebra A, the set $\mathbb {K}_{A}(\mathbf {X})$ of A-compact operators on $\mathbf {X}$ is the (up to isomorphism) unique $\mathrm {C}^{*}$-algebra that is strongly Morita equivalent to the coefficient algebra A via $\mathbf {X}$. As a bimodule, $\mathbb {K}_{A}(\mathbf {X})$ can also be thought of as the balanced tensor product $\mathbf {X}\otimes _{A} \mathbf {X}^{\mathrm {op}}$, and so the latter naturally becomes a $\mathrm {C}^{*}$-algebra. We generalize both of these facts to the world of Fell bundles over groupoids: Suppose $\mathscr {B}$ is a Fell bundle over a groupoid $\mathcal {H}$ and $\mathscr {M}$ is an upper semi-continuous Banach bundle over a principal $\mathcal {H}$-space X. If $\mathscr {M}$ carries a right-action of $\mathscr {B}$ and a sufficiently nice $\mathscr {B}$-valued inner product, then its imprimitivity Fell bundle $\mathbb {K}_{\mathscr {B}}(\mathscr {M})=\mathscr {M}\otimes _{\mathscr {B}} \mathscr {M}^{\mathrm {op}}$ is a Fell bundle over the imprimitivity groupoid of X, and it is the unique Fell bundle that is equivalent to $\mathscr {B}$ via $\mathscr {M}$. We show that $\mathbb {K}_{\mathscr {B}}(\mathscr {M})$ generalizes the “higher order” compact operators of Abadie–Ferraro in the case of saturated bundles over groups, and that the theorem recovers results such as Kumjian’s Stabilization trick.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work was supported by Methusalem grant METH/21/03 — long term structural funding of the Flemish Government, and an FWO Senior Postdoctoral Fellowship (project number 1206124N).

References

Abadie, F. and Ferraro, D., Equivalence of Fell bundles over groups . J. Operator Theory 81(2019), no. 2, 273319. https://doi.org/10.7900/jot.CrossRefGoogle Scholar
Buss, A., Meyer, R., and Zhu, C., A higher category approach to twisted actions on ${C}^{\ast }$ -algebras . Proc. Edinb. Math. Soc. (2) 56(2013), 387426. https://doi.org/10.1017/S0013091512000259.CrossRefGoogle Scholar
Duwenig, A. and Emerson, H., Transversals, duality, and irrational rotation . Trans. Amer. Math. Soc. Ser. B. 7(2020), 254289. https://doi.org/10.1090/btran/54.CrossRefGoogle Scholar
Duwenig, A. and Li, B., Equivalence of Fell bundles is an equivalence relation . Münster J. Math. 16(2023), no. 1, 95145. https://doi.org/10.17879/51009605127.Google Scholar
Duwenig, A. and Li, B., Imprimitivity theorems and self-similar actions on Fell bundles. Journal of Functional Analysis 288(2025), no. 2, 110699. https://doi.org/10.1016/j.jfa.2024.110699.CrossRefGoogle Scholar
Duwenig, A. and Li, B., The Zappa-Szép product of a Fell bundle and a groupoid . J. Funct. Anal. 282(2022), no. 1, 109268. https://doi.org/10.1016/j.jfa.2021.109268.CrossRefGoogle Scholar
Echterhoff, S., Kaliszewski, S., Quigg, J., and Raeburn, I., A categorical approach to imprimitivity theorems for ${C}^{\ast }$ -dynamical systems . Mem. Amer. Math. Soc. 180(2006), pp. viii+169. https://doi.org/10.1090/memo/0850.Google Scholar
Exel, R., Morita-Rieffel equivalence and spectral theory for integrable automorphism groups of $C\ast$ -algebras . J. Funct. Anal. 172(2000), no. 2, 404465. https://doi.org/10.1006/jfan.1999.3537.CrossRefGoogle Scholar
Fell, J. M. G. and Doran, R. S., Representations of ${}^{\ast }$ -algebras, locally compact groups, and Banach ${}^{\ast }$ -algebraic bundles: Basic representation theory of groups and algebras. Vol. 1, Pure and Applied Mathematics, 125, Academic Press, Inc., Boston, MA, 1988, pp. xviii+746.Google Scholar
Ferraro, D., Fixed-point algebras for weakly proper Fell bundles . New York J. Math. 27(2021), 943980.Google Scholar
Green, P., ${C}^{\ast }$ -algebras of transformation groups with smooth orbit space . Pacific J. Math. 72(1977), 7197. http://projecteuclid.org/euclid.pjm/1102811272.CrossRefGoogle Scholar
Hofmann, K. H., Bundles and sheaves are equivalent in the category of Banach spaces . In: $\mathrm{K}$ -theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, GA, 1975), Lecture Notes in Math, 575, Springer, Berlin-New York, 1977, pp. 5369.Google Scholar
Huef, A., Kaliszewski, S., Raeburn, I., and Williams, D. P., Naturality of symmetric imprimitivity theorems . Proc. Amer. Math. Soc. 141(2013), no. 7, 23192327. https://doi.org/10.1090/S0002-9939-2013-11712-0.CrossRefGoogle Scholar
Ionescu, M. and Williams, D. P., A classic Morita equivalence result for Fell bundle $C^{\ast}$ -algebras . Math. Scand. 108(2011), no. 2, 251263. https://doi.org/10.7146/math.scand.a-15170.CrossRefGoogle Scholar
Kaliszewski, S., Muhly, P. S., Quigg, J., and Williams, D. P., Fell bundles and imprimitivity theorems . Münster J. Math. 6(2013), no. 1, 5383. https://doi.org/10.1017/s1446788713000153.Google Scholar
Kaliszewski, S., Muhly, P. S., Quigg, J., and Williams, D. P., Fell bundles and imprimitivity theorems: towards a universal generalized fixed point algebra . Indiana Univ. Math. J. 62(2013), no. 6, 16911716. https://doi.org/10.1512/iumj.2013.62.5107.CrossRefGoogle Scholar
Kumjian, A., Fell bundles over groupoids . Proc. Amer. Math. Soc. 126(1998), no. 4, 11151125. https://doi.org/10.1090/S0002-9939-98-04240-3.CrossRefGoogle Scholar
Lazar, A. J., A selection theorem for Banach bundles and applications . J. Math. Anal. Appl. 462(2018), no. 1, 448470. https://doi.org/10.1016/j.jmaa.2018.02.008.CrossRefGoogle Scholar
Mesland, B. and Sengun, M. H., Stable Range Local Theta Correspondence as a Strong Morita Equivalence, in preparation. 2023.CrossRefGoogle Scholar
Muhly, P. S., Bundles over groupoids . In: Groupoids in analysis, geometry, and physics (Boulder, CO, 1999), Contemporary Mathematics, 282, American Mathematical Society, Providence, RI, 2001, pp. 6782. https://doi.org/10.1090/conm/282/04679.CrossRefGoogle Scholar
Muhly, P. S., Renault, J. N., and Williams, D. P., Equivalence and isomorphism for groupoid $C\ast$ -algebras . J. Operator Theory 17(1987), no. 1, 322.Google Scholar
Muhly, P. S. and Williams, D. P., Equivalence and disintegration theorems for Fell bundles and their $C^{\ast}$ -algebras . Diss. Math. 456(2008), 157. https://doi.org/10.4064/dm456-0-1.Google Scholar
Munkres, J. R., Topology. Prentice Hall, Inc., Upper Saddle River, NJ, 2000, pp. xvi+537.Google Scholar
Raeburn, I. and Williams, D. P., Morita equivalence and continuous-trace ${C}^{\ast }$ -algebras, Mathematical Surveys and Monographs, 60, American Mathematical Society, Providence, RI, 1998, pp. xiv+327. https://doi.org/10.1090/surv/060.Google Scholar
Rieffel, M. A., Proper actions of groups on $C^{\ast}$ - algebras . In: Mappings of operator algebras (Philadelphia, PA, 1988), Progress in Mathematics, 84, Birkhäuser, Boston, MA, 1990, pp. 141182.Google Scholar
Sims, A. and Williams, D. P., An equivalence theorem for reduced Fell bundle $C^{\ast}$ -algebras . New York J. Math. 19(2013), 159178. http://nyjm.albany.edu:8000/j/2013/19_159.html.Google Scholar
Sims, A. and Williams, D. P., Renault’s equivalence theorem for reduced groupoid $C^{\ast}$ -algebras . J. Operator Theory 68(2012), no. 1, 223239.Google Scholar
Williams, D. P., A tool kit for groupoid $C^{\ast}$ -algebras, Mathematical Surveys and Monographs, 241, American Mathematical Society, Providence, RI, 2019, pp. xv+398. https://doi.org/10.1016/j.physletb.2019.06.021.Google Scholar
Williams, D. P., Crossed products of ${C}^{\ast }$ -algebras, Mathematical Surveys and Monographs, 134, American Mathematical Society, Providence, RI, 2007, pp. xvi+528. https://doi.org/10.1090/surv/134.Google Scholar
Williams, D. P., Haar systems on equivalent groupoids . Proc. Amer. Math. Soc. Ser. B. 3(2016), 18. https://doi.org/10.1090/bproc/22.CrossRefGoogle Scholar