Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T07:28:13.740Z Has data issue: false hasContentIssue false

Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields

Published online by Cambridge University Press:  20 November 2018

Stéphane Louboutin*
Affiliation:
Institut de Mathématiques de Luminy, UPR 906, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide the reader with a uniform approach for obtaining various useful explicit upper bounds on residues of Dedekind zeta functions of numbers fields and on absolute values of values at $s=1$ of $L$-series associated with primitive characters on ray class groups of number fields. To make it quite clear to the reader how useful such bounds are when dealing with class number problems for CM-fields, we deduce an upper bound for the root discriminants of the normal CM-fields with (relative) class number one.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2001

References

[Arn] Arno, S., The imaginary quadratic fields of class number v4 . Acta Arith. 60(1992), 321334.Google Scholar
[BarL] Barrucand, P. and Louboutin, S., Majoration et minoration du nombre de classes d’idéaux des corps réels purs de degré premier. Bull. London Math. Soc. 25(1993), 533540.Google Scholar
[Bou] Boutteaux, G., Corps a multiplication complexe non galoisiens de degré 6 principaux. Ph.D. Thesis, Univ. Caen, in preparation.Google Scholar
[BouL] Boutteaux, G. and Louboutin, S., The class number one problem for some non-normal sextic CM-fields. To appear.Google Scholar
[CK] Chang, K.-Y. and Kwon, S.-H., Class numbers of imaginary abelian number fields. Proc. Amer. Math. Soc. 128(2000), 25172528.Google Scholar
[Dav] Davenport, H., Multiplicative Number Theory. Second edition, Springer-Verlag, 1980.Google Scholar
[GS] Granville, A. and Stark, H. M., ABC implies no “Siegel zeros” for L-functions of characters with negative discriminant. Invent. Math. 139(2000), 509523.Google Scholar
[HH] Horie, K. and Horie, M., CM-fields and exponents of their ideal class groups. Acta Arith. 55(1990), 157170.Google Scholar
[Hof] Hoffstein, J., Some analytic bounds for zeta functions and class numbers. Invent. Math. 55(1979), 3747.Google Scholar
[Hor] Horie, K., On a ratio between relative class numbers. Math. Z. 211(1992), 505521.Google Scholar
[Lan] Lang, S., Algebraic Number Theory. Graduate Texts in Math. 110, second edition, Springer-Verlag, 1994.Google Scholar
[Lef] Lefeuvre, Y., Corps diédraux à multiplication complexe principaux. Ann. Inst. Fourier 50(2000), 67103.Google Scholar
[Lem] Lemmermeyer, F., Ideal class groups of cyclotomic number fields, I. Acta Arith. 72(1995), 347359.Google Scholar
[LL] Lefeuvre, Y. and Louboutin, S., The class number one problem for the dihedral CM-fields. In: Proceedings of the ICM 1998 Satellite Conference, Algebraic Number Theory and Diophantine Analysis (Gras, August 31-September 4, 1998).Google Scholar
[LLO] Lemmermeyer, F., Louboutin, S. and Okazaki, R., The class number one problem for some non-abelian normal CM-fields of degree 24 . J. Théor. Nombres Bordeaux 11(1999), 387406.Google Scholar
[LO1] Louboutin, S. and Okazaki, R., Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one. Acta Arith. 67(1994), 4762.Google Scholar
[LO2] Louboutin, S. and Okazaki, R., The class number one problem for some non-abelian normal CM-fields of 2-power degrees. Proc. London Math. Soc. (3) 76(1998), 523548.Google Scholar
[LO3] Louboutin, S. and Okazaki, R., Determination of all quaternion CM-fields with ideal class groups of exponent 2 . Osaka J. Math. 36(1999), 229257.Google Scholar
[LOO] Louboutin, S., Okazaki, R. and Olivier, M., The class number one problemfor some non-abelian normal CM-fields. Trans. Amer. Math. Soc. 349(1997), 36573678.Google Scholar
[Lou1] Louboutin, S., Majorations explicites de |L(1, χ)|. C. R. Acad. Sci. Paris 316(1993), 1114.Google Scholar
[Lou2] Louboutin, S., Lower bounds for relative class numbers of CM-fields. Proc. Amer.Math. Soc. 120(1994), 425434.Google Scholar
[Lou3] Louboutin, S., Determination of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents ≤ 2 . Math. Comp. 64(1995), 323340.Google Scholar
[Lou4] Louboutin, S., Majorations explicites de |L(1, χ)| (suite). C. R. Acad. Sci. Paris 323(1996), 443446.Google Scholar
[Lou5] Louboutin, S., Determination of all quaternion octic CM-fields with class number 2 . J. London Math. Soc. 54(1996), 227238.Google Scholar
[Lou6] Louboutin, S., The class number one problem for the non-abelian normal CM-fields of degre 16 . Acta Arith. 82(1997), 173196.Google Scholar
[Lou7] Louboutin, S., CM-fields with cyclic ideal class groups of 2-power orders. J. Number Theory 67(1997), 110.Google Scholar
[Lou8] Louboutin, S., Majorations explicites du résidu au point 1 des fonctions zêta des corps de nombres. J. Math. Soc. Japan 50(1998), 5769.Google Scholar
[Lou9] Louboutin, S., Upper bounds on |L(1, χ)| and applications. Canad. J. Math. 50(1999), 794815.Google Scholar
[Lou10] Louboutin, S., The class number one problem for the dihedral and dicyclic CM-fields. Colloq. Math. 80(1999), 259265.Google Scholar
[Lou11] Louboutin, S., Explicit bounds for residues of Dedekind zeta functions, values of L-functions at s = 1 and relative class numbers. J. Number Theory 85(2000), 263282.Google Scholar
[Lou12] Louboutin, S., Majorations explicites de |L(1, χ)| (troisième partie). C. R. Acad. Sci. Paris 332(2001), 9598.Google Scholar
[Lou13] Louboutin, S., Computation of L(0, χ) and of relative class numbers of CM-fields. Nagoya Math. J. 161(2001), 171191.Google Scholar
[LP] Louboutin, S. and Park, Y.-H., Class number problems for dicyclic CM-fields. Publ. Math. Debrecen 57(2000), 283295.Google Scholar
[LPL] Louboutin, S., Park, Y.-H. and Lefeuvre, Y., Construction of the real dihedral number fields of degre. 2p. Applications. Acta Arith. 89(1999), 201215.Google Scholar
[LPP] Lenstra, H. W., Pila, J. and Pomerance, C., A hyperelliptic smoothness test, II. To appear.Google Scholar
[LYK] Louboutin, S., Yang, Y.-S. and Kwon, S.-H., The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent ≤ 2. Preprint, Univ. Caen, November 1999.Google Scholar
[Mel] Mellin, H., Abriss einer einheitlichen der Gamma und hypergeometrischen Funktionen. Math. Ann. 68(1910), 305337.Google Scholar
[MM] Murty, M. R. and Murty, V. K.. Non-vanishing of L-functions and applications. Progr. Math. 157, Birkhäuser Verlag, 1997.Google Scholar
[Mur] Murty, V. K., Stark zeros in certain towers of fields. Math. Research Letters 6(1999), 511519.Google Scholar
[Odl] Odlyzko, A., Some analytic estimates of class numbers and discriminants. Invent. Math. 29(1975), 275286.Google Scholar
[Oka] Okazaki, R., Inclusion of CM-fields and divisibility of relative class numbers. Acta Arith. 92(2000), 319338.Google Scholar
[Rad] Rademacher, H., Topics in Analytic Number Theory. Springer-Verlag, 1973.Google Scholar
[Ram] Ramaré, O., Approximate formulae for L(1, χ). Acta Arith., to appear.Google Scholar
[Ser] Serre, J. P., Minorations de discriminants. In: Collected Papers, Vol. III (1972–1984), Springer-Verlag.Google Scholar
[Sta] Stark, H. M., Some effective cases of the Brauer-Siegel Theorem. Invent. Math. 23(1974), 135152.Google Scholar
[Was] Washington, L. C., Introduction to Cyclotomic Fields. Graduate Texts in Math. 83, second edition, Springer-Verlag, 1997.Google Scholar
[Yam] Yamamura, K., The determination of the imaginary abelian number fields with class number one. Math. Comp. 62(1994), 899921.Google Scholar
[YK] Yang, H.-S. and Kwon, S.-H., The non-normal quartic CM-fields and the octic dihedral CM-fields with relative class number two. J. Number Theory 79(1999), 175193.Google Scholar