Published online by Cambridge University Press: 20 November 2018
J. M. Borwein has given in [1] a practical necessary and sufficient condition for a convex operator to be continuous at some point. Indeed J. M. Borwein has proved in his paper that a convex operator with values in an order topological vector space F (with normal positive cone F+) is continuous at some point if and only if it is bounded from above by a mapping which is continuous at this point. This result extends a previous one by M. Valadier in [16] asserting that a convex operator is continuous at a point whenever it is bounded from above by an element in F on a neighbourhood of the concerned point. Note that Valadier's result is necessary if and only if the topological interior of F+ is nonempty. Obviously both results above are generalizations of the classical one about real-valued convex functions formulated in this context exactly as Valadier's result (see for example [5]).