Published online by Cambridge University Press: 20 November 2018
A basic tool in the usual presentation of the Morita theorems is the correspondence theorem for projective modules. Let RM be a left R-module and B = HomR(M, M). When M is a progenerator, there is a close connection (in fact a lattice isomorphism) between left R-submodules of M and left ideals of B, which can be applied to the solution of problems such as characterizing when the endomorphism ring of a finitely generated projective faithful module is simple or right Noetherian. More generally, Faith proved that this connection can be retained in suitably modified form when M is just a generator in R-mod ([4], [2], [3]). In this form the correspondence theorem can be applied to show, e.g., that, when RM is a generator, then (a): RM is finite-dimensional if and only if B is a left finite-dimensional ring and in this case d(RM) = d(BB), and (b): If RM is nonsingular then B is a left nonsingular ring ([6]).