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ENDOMORPHISM RINGS AND GABRIEL 
TOPOLOGIES 

SOUMAYA MAKDISSI KHURI 

Introduction. A basic tool in the usual presentation of the Morita 
theorems is the correspondence theorem for projective modules. Let BM 
be a left i?-module and B = Hom# (M, M). When M is a progenerator, 
there is a close connection (in fact a lattice isomorphism) between left 
i?-submodules of M and left ideals of B, which can be applied to the 
solution of problems such as characterizing when the endomorphism ring 
of a finitely generated projective faithful module is simple or right 
Noetherian. More generally, Faith proved that this connection can be 
retained in suitably modified form when M is just a generator in i^-mod 
( H], [2], [3] ). In this form the correspondence theorem can be applied to 
show, e.g., that, when ^Mis a generator, then (a): RM is finite-dimensional 
if and only if B is a left finite-dimensional ring and in this case d(RM) = 
d(BB), and (b): If RM is nonsingular then B is a left nonsingular ring 
( [6] )• 

Notation. If U is a submodule of M, let 

IB(U) = {b G B.Mb Q U}. 

A generator is, in particular, a self-generator, in the sense that, for any 
submodule, £/, of M, we have MIB(U) = U. Assume next that M is a 
module with a closure operator, q>(U) = If, defined on its lattice, «Sf(M), 
of submodules, and that M, while not necessarily a generator, is a 
oself-generator, in the sense that, for any oclosed submodule, U, we 
have 

[MIB(U)f = U. 

Then, it is shown in [7] that, for certain closure operators and under 
suitable conditions on M, there is a lattice isomorphism between the 
lattice ££C(M) of c-closed submodules of M and the lattice of annihilator 
left ideals of B. This lattice isomorphism can be used to find out, for 
example, what conditions on M are necessary and sufficient to ensure that 
B is a Baer ring or a left Utumi ring ( [7] ). 
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In the preceding examples, properties of M are deduced from properties 
of B or, conversely, by making use of some lattice isomorphism or 
correspondence theorem between a lattice of c-closed submodules of M 
and a lattice of c'-closed left ideals of B, where c and c' are specific closure 
operators. One way of treating such questions in a more general 
framework is by using kernel functors or Gabriel topologies, which have 
naturally associated closure operators, in combination with Morita 
contexts, which are very useful in manipulating endomorphism rings of 
modules. 

Thus, suppose a is a kernel functor on the category of all left 
i^-modules, RWl, and let (R, M, M*, B) be the standard Morita context for 
M; let oS?a(Af ) be the lattice of a-closed submodules of M. Then two key 
questions arise naturally in this situation: 

First, is there, on the category BWl of left 5-modules, a kernel functor, â, 
which is associated with, or most natural for, the kernel functor a on 

R3Jll 
And, secondly, given a on RWl and à on BW, is there a lattice 

isomorphism between J?°(M) and J?°(B) which will enable us to link 
together properties of M and Bl 

With regard to the first question, it is shown in [8] that, if a is an 
idempotent kernel functor on RWl such that (M, M*) c aR and if the 
standard Morita context for M satisfies the non-degeneracy condition: 
[M*, m] ¥= 0 whenever 0 ¥" m G M, then there is an idempotent kernel 
functor a on BW which is naturally derived from a. After making the 
necessary definitions in Section 2, we shall see in Section 3 that, if RM is a 
generator, then the above conditions are satisfied for any kernel functor, 
and we shall give examples of a and M satisfying these conditions, with M 
not necessarily a generator. Thus, given a on RWl and M G RTl satisfying 
the above hypothesis, we have a naturally derived ô on #2ft, and we show, 
in Theorem 3.3, that there is a lattice isomorphism between J£°{M) and 
J?°(B). Some related results occur in [9], where it is shown that the lattices 
of closed submodules are isomorphic whenever the kernel functor is the 
one determined by the trace ideal; the method of proof there differs from 
the one in this article, however, the emphasis there being on the 
equivalence between certain quotient categories. As an application in 
Section 4, we consider the important special case of the Goldie kernel 
functor, and in Theorem 4.3, we use the lattice isomorphism to show 
that: 

(a) If M is nonsingular, then B is a left nonsingular ring with maximal 
left quotient ring Qmax = B = Hom# (M, M), where M(B) is the 
injective hull of M(B); 

(b) B is a left CS ring if and only if M is a CS module (i.e., every 
complement submodule of M is a direct summand of M, cf. [1] ); 

https://doi.org/10.4153/CJM-1984-013-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-013-4


ENDOMORPHISM RINGS 195 

(c) d(RM) < oo if and only if d(BB) < oo (here d indicates Goldie 
dimension), and in this case d(RM) = d(BB) and B is semisimple 
artinian. 

2. Definitions and preliminaries. Throughout this paper, R will denote 
an associative ring with identity, RWl the category of left 7?-modules and a 
a kernel functor on RWl, that is, a functor o:R3R —> RWl satisfying: 

Kl . For each left i?-module M, o(M) is a submodule of M. 
K2. If M, M' are left ^-modules a n d / e Horn/? (M, M'\ then 

[a(M) ]/" c a(M') 

and a ( / ) is the restriction o f / t o a(M). 
K3. If M, M' are left i^-modules such that M Q M\ then 

o(M) = M n a(M'). 

A kernel functor a on R¥t is said to be idempotent if it satisfies the 
additional property: 

K4. o(M/o(M) ) = 0, for each left ^-module M. 

Assume henceforth that a is an idempotent kernel functor on Rffl. 
A left i^-module M is said to be o-torsion free if o(M) = 0 and o-torsion 

if o(M) = M. An i^-submodule N of M is said to be a o-submodule of M or 
o-dense in M, written TV c aM, if M/N is a-torsion; TV is o-closed in M if 
M/7V is a-torsion free. The a-closed submodule, N°, of M defined by N°/N 
= o(M/N) is called the o-closure of N. The mapping N —» jVa is a closure 
operator on the lattice Sf{M) of submodules of M, i.e., it satisfies: 

CI. AT c L implies 7Va Q L° for JV, L €= ^ ( M ) . 
C2. TV ç Na. 
C3. (A^a)a = 7Va. 

The class of a-torsion modules is closed under submodules, homomor-
phisms, extension and direct sums, while the class of a-torsion free 
modules is closed under isomorphism, submodules, extension, injective 
hulls and direct products. 

Notation. For subsets TV and K of a module M, we set 

(N:K) = {r e R:rK Q N). 

A nonempty set 3 of left ideals of R is called a Gabriel topology on R if 0 
£ S and it satisfies: 
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Tl. If / G S and / is a left ideal of R such that I Q J, then J <= % 
T2. If /, J G % then / n / G & 
T3. If / G S and r G # , then (I:r) G S-
T4. If / is a left ideal of R and there exists / £ § such that (/:/•) G S for 
every r G / , then / G S-

For a given idempotent kernel functor a on /$)t, let Sa = { ^ 1S a left 
ideal of # such that I o aR}. Then it is easy to prove that Sa 1S a Gabriel 
topology on JR. 

Conversely, if S is a Gabriel topology on R, then the functor o^:RW —> 
#2)? given by 

o^(M) = {m G M:/m = 0 for some / £ § } , 

for each left ^-module M, is an idempotent kernel functor on #3W. 
Moreover, the map F:o f—» Sa is a one-to-one correspondence between the 
class of all idempotent kernel functors on RWl and the class of all Gabriel 
topologies on R with G:S l_> org as its inverse map. 

If a is an idempotent kernel functor and Sa lS l t s corresponding Gabriel 
topology, then the closure, N°, of a submodule JV of M G #2ft is given 
by 

Afa = {m G M:(N:m) G Sa}-

Given a Gabriel topology S, a module M is %-injective if every/ G Horn/? 
(/, M) with / G S can be extended to an element of Hom# (R, M)\ 
equivalently, o^(M/M) = 0, where M denotes the .R-injective hull of M. 
Every module has a ^-injective hull, %(M), obtained as 

S(M) /M = o*0d/M)\ 

note that M is a^-dense in %(M), and SC&O is o^-closed in M. The module 
of quotients, M%, of M with respect to S is defined as %(M/o%(M) ); M^ is 
a^-torsion free and S-injective. R% = %(R/o%(R) ) forms a ring called the 
ring of quotients of R with respect to S-

For more details on Gabriel topologies and torsion theories the reader is 
referred to [10]. 

A quadruple (R, M, N, S), where R and S are rings and RMS and SNR 

are bimodules, is called a Morita context if there exists an R-R module 
homomorphism (,):M ® 5 N -> R and an S-S module homomorphism [,]:N 
®R M -» S such that 

m\[n\, m^\ = (mj, fti)ra2 

and 

"i("M, «2) = [«1, mx]n2 

for all raz G M, «f- G JV, /' = 1, 2. 
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If M is a left ^-module, Af* = Hom^ (Af, R) and £ - Hom^ (M, AT), 
then (#, M, Af*, J5) is a Morita context with (m, / ) = mfîov all m e M 
a n d / G M*, and [/, m] is defined by m\[f, m] = (m\,f)m for all m, wj G 
Af,/ e M*; it is called the standard Morita context for RM. 

3. The lattice isomorphism. It is shown in [8] that, if M is a left 
.R-module such that the standard context (R, Af, Af*, B) satisfies the 
nondegeneracy condition: 

ND. [Af*, m] T̂  0 whenever 0 ¥* m <E Af; 

and if o is an idempotent kernel functor on RWl such that o(M) = 0 and 
(Af, Af*) G ^ a , then there is an idempotent kernel functor ô on B¥l which 
is naturally derived from a, namely the kernel functor corresponding to 
the topology $ defined as follows: 

g* = {/:/ is a left ideal of B and / 2 [M*, A'], where # c aAf }. 

For easy reference, we denote the above hypotheses on M and its 
standard Morita context by (H). We assume henceforth, unless otherwise 
indicated, that (R, Af, Af*, B) and a satisfy hypothesis (H), with ô and 
5̂ defined as above. 

3.1 Examples. Hypothesis (H) is satisfied in case BM is a generator, for, 
in that case, the trace ideal, (Af, Af*), equals R and hence (Af, Af*) G ^ a 

for every kernel functor on RW, and also: [Af*, m] = 0 for m e M 
implies 

Rm = (Af, M*)m = Af[AT*, m] = 0, 

so that m = 0, which shows that ND holds. 
However, #Af need not be a generator for hypothesis (H) to hold. For 

example, let RM be a torsionless, faithful i^-module, where R is a 
semiprime ring, and consider the standard context (R, Af, Af*, B). Then 
the nondegeneracy condition holds (cf. e.g. [8], Proposition 6). Let a be the 
Goldie kernel functor, so that o(M) = 0 means M is nonsingular. Then it 
is not difficult to see that (Af, Af*) is essential in RR, so that (Af, Af*) e ^ a 

since a is the Goldie kernel functor; for, let 0 ¥= a e R, we will show 
that 

Ra n (Af, Af*) * 0. 

Since RM is faithful, there exists a nonzero m$ G Af such that am$ =£ 0. 
Let 0 ¥= / G Af* be such that [/ ûm0] T̂  0; /exists by ND. There is m\ G 
Af with 

mx[f, am0] ¥= 0, 
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so we have 0 ^ (m\,f)am§ and, in particular, 

0 ^ (mhf)a = (mhfa) e (M, M*) n ita. 

Here, M need not be a generator unless R is left pre-PF ( = every faithful 
left ideal generates mod-R), as can be seen from the following result ( [5], 
Proposition IF p. 165): 

Every torsionless faithful left ^-module generates mod-i? if and only if 
R is a left pre-Pi7 ring. 

A particularly simple example of a module which is not a generator but 
satisfies (H) is obtained by taking M to be any essential ideal, K, in a 
commutative semi prime ring R, such that K is not finitely generated and 
projective. For, in that case, ND holds since K is torsionless over a 
semiprime ring, the trace T is essential in R since TDK, and K is not a 
generator since an ideal of a commutative ring is a generator only if it is 
finitely generated and projective. 

The following lemma groups together some known results which will be 
needed in the proof of Theorem 3.3. 

LEMMA 3.2. (a) IfN\ c Nj c iV3 is a trio of submodules and Nj is o-dense 
(respectively, o-closed) in Nt+\,for i = 1,2, then N\ is o-dense (respectively, 
o-closed) in N3. 

(b) Ifh\RM —» RL is a homomorphism, L is o-torsion free and ker h c °M, 
then ker h = M, that is, h is the zero homomorphism. 

Proof, (a) This follows because the a-torsion (respectively a-torsion free) 
modules are closed under extension. 

(b) Set K = ker h. For any i e M, we have (K, x) c °R: for, if r\ is any 
element of R, then r\x e M and K c a M imply that there is a left ideal / 
e ^ a such tha t / ( r jx) Q K, hence (*/>i)x - K and Jrj ç (AT:x); showing 
that (#:*) c ai^. Now (K:x)(xh) Q Kh = 0 and <X:x) c a P imply that xh 
is a-torsion. But xh e L which is a-torsion free; hence xh = 0 and M = 
ker /z. 

THEOREM 3.3. If (R, M, M*, B) and o satisfy (H), then the maps W —> 
IQ(W) and J —» (MJ)° determine a lattice isomorphism between the lattice, 
££a(M), of o-closed submodules, W, of M and the lattice, J£a(B), of ô-closed 
left ideals, J, of B. 

Proof. It is easy to see that the two maps are order-preserving. Since 
(MJ)° is a-closed by definition, we need to show that IB(W) is ô-closed 
whenever W is a-closed and that the two maps are bijective. 

Assume that W = W° is a-closed so that Ml W is a-torsion free. To 
show that IB(W) is â-closed, let b + IB(W) be a. â-torsion element of 
B/IB(W) and show that this element is the zero element in B/IB(W). 
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Since b + IB(W) is â-torsion, there is / G S such that Jb Q IB(W). 
Hence there is a a-submodule K of M such that / 3 [Af*, A'], and so [Af *, 
£]6 C jfl(fp). Then 

(M, M*)£/> - Af[M*, £]/> ç tf/ 

and hence, since (Af, M*) G ^ a , every element of Xfc is a-torsion in Ml W. 
But Af/ W is a-torsion free, hence Kb = 0 in Af/ W, or AZ? ç tf/ The 
composition h = bir of b with the canonical projection 7r:Af —» M/W is 
such that A ç ker A; hence, by Lemma 3.2 (b), since À" c aAf, we have h 
= 0, that is, Af6 c pp and b G J 5 ( » 0 , or b + /5(J*0 = 0 as required. 

It remains to prove that the two maps are inverses of each other, that is, 
that 

[MIB(W)]° = W and IB[(MJ)°] = J, 

for W a-closed and / â-closed. 
Clearly, MIB(W) Q W implies [MIB(W)]° Q W° = W. To show the 

reverse inclusion, let x G W. We have 

Af[Af*, x] = (Af, M*)x Q W, 

that is, 

[Af*, x] Q IB(W) and (Af, Af*)x = Af[Af*, x] Q MIB(W). 

Since (Af, Af*) G %, this shows that 

(MIB(W):x) G % 

hence JC G [AfJfi(W0 ]a, so that 

W Q [MIB(W) ]° and W = [MIB(W)}°. 

Finally, assume that / = J° is a â-closed left ideal of B. It is easy to see 
that 

J Ç IB(MJ) Q IB[(MJn 

To show that / c °IB(MJ), let c G IB(MJ), SO that Afc Ç M/. Then, for 
any ^ G Af, we have 

>>c = ZJ info, with raz G Af, Z?z G y, / = 1, . . . , w. 
/ = i 

Hence, for any m G Af and g G Af*, we have 

m[g,y]c = (m, g)yc = (m, g)( 2 ^ A ) = 2 (w, g)wA 
v / = i 7 / = i 

= ^ w[g, wjè/ = m 2J [g, raz]Z?z = mb, b G / ; 
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here, [g, ml]bl e / , for / = 1, . . . , w, since J is a left ideal of B. Hence [g, 
>>]c G J for each g G M* and j G M, that is, c G IB(MJ) implies [M*, 
M]c ç J. Since [M*, M] G 3~, this shows that / c °IB(MJ). 

Next, let b G /#[ (M/)a], so that Afl> ç (MJ)°. Then, for each m G M, 
there is / G ^ a such that I(mb) Q MJ. Let 

K = {m G M:m/? G M / } . 

AT is clearly an /^-submodule of M. Also, K c aM, for, if _y G A/, then^è G 
(M/) a , hence there is / G ^G such that I(yb) Q MJ, hence ly Q K. We 
have 

M[M*9 K]b = (M, M*)J» Ç (M, M*)M/ Ç MJ, 

which implies [M*, JST]ft £ IB(MJ). Since [Af*, A'] G §", this shows that 

/ 5 ( M / ) c ^ [ ( M / ) " ] . 

Now, / c %{MJ) and / 5 ( M / ) c <7fl[ (MJ)0] imply, by Lemma 3.2 (a), 
that 

Jc%[(MJ)al 

that is IB[ (MJ)°]/J is â-torsion; but / is â-closed, that is IB[ (MJ)°]/J is 
â-torsion free; hence / = IB[ (MJ)°] and the proof is complete. 

4. The Goldie topology. We consider now the case of the Goldie torsion 
functor or, equivalently, the Goldie topology, &, here & = {RI'.RI Q RJ 

where J and (I:r) are essential left ideals of R for each r G / } ; that is, ^ i s 
the smallest Gabriel topology which contains the set of essential left ideals 
of R (cf. [10], p. 148). 

The next lemma is a restatement of some known results which will be 
needed in the sequel. 

LEMMA 4.1. (a) For any idempotent kernel functor o, a o-dense submodule 
N of a o-torsionfree module M is essential in M. 

(b) If a is the Goldie kernel functor, then the converse of (a) holds, that is, 
an essential submodule of a o-torsionfree module is o-dense. 

(c) When o is the Goldie kernel functor and o(M) = 0, then for any two 
submodules W\, W2 of M, we have W\ n W2 = if and only if W°x n W°2 

= 0. 

Proof (a) For N c °M and 0 ¥= m G M, with o(M) = 0, we have 

(N\m) G % and 0 ¥= (N:m)m Q Rm n N. 

(b) By [11] ((2.3), p. 104), essential submodules of a-torsionfree 
modules are a-dense if and only if a-torsionfree ^a-injective modules are 
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injective. Since, when a is the Goldie kernel functor, ^-injectives are 
injective (cf. e.g. [10], p. 204), the result follows. 

(c) Since a is the Goldie kernel functor, this is simply a well-known 
property of essential extensions. 

We still keep our hypothesis, (H), on M and its standard context, noting 
that, with the Goldie topology on R, o(M) = 0 means RM is nonsingular, 
that is, that 0 is the only element of M which is annihilated by an essential 
left ideal of R. It is natural to expect here that, when ^ = ^, then $ 
should be the Goldie topology on B. The next lemma shows that this 
expectation is justified. 

LEMMA 4.2. If RM and its standard context satisfy (H), and ^= &> the 
Goldie topolgy on R, then 2T is the Goldie topology on B. 

Proof Recall that 

S = {RI'I 2 [M*, K], where K c °M). 

We will show that / G ^ if and only if / is essential in B, and this will 
show that £s is the Goldie topology on B. The reason that the Goldie 
topology on B coincides with the set of essential left ideals of B is that BB 
is â-torsionfree, by Theorem 8 of [8] since o(M) = 0, hence, by Lemma 4.1 
(a), every ô-dense left ideal of B is essential in B. 

Assume that 7 e § , that is J 2 [M*, K], where K c °M. By Lemma 4.1 
(a), since a(M) = 0, this implies that K is essential in M. To show that / is 
essential in B, let 0 ¥= b G B. Since Mb ¥= 0, there is mx G M such 
that 

0 * mxb G K H Mb. 

By ND, [M*9 mxb] ¥= 0, and since [M*, K] Q f we have [M*, mxb] Q f 
hence 

0 * [M*, mxb] = [M*9 mx]b Q I n Bb. 

Since b was any nonzero element of B, this shows that / is essential in 
B. 

Conversely, assume that / is essential in B. Let 

K = {m Œ M:[M*, m] Q 1}. 

It is easy to see that K is an i£-submodule of M. To see that K is essential 
in M, let 0 * m0 G M. By ND, [M*9 m0] ¥= 0, hence there is 0 ^ b0 e 
[A/*, m0] n /, say fr0 = L/b> mo\> for some/0

 G Af*. Let 0 ^ mj G M be 
such that mxbo ¥= 0 and set r0 = (mx,fo). Then 

0 ¥= mxb0 = mx[f0, m0] = (mhf0)m0 = r0m0. 
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Now, given a n y / e M*, if m is any element of M, we have: 

™[f r0mo] = (m,f)(r0m0) = (m,f)(mib0) = ((m,f)mi)b0 

= (rn[f, mx] )b0 = m( [f /wi]ft0); 

therefore, [/, r0mo] = [/, m j ]^ ^ / since Z?o ^ / . Hence, [M*, r0m0] Q /, 
so that 0 ^ r0mo ^ K D Rm$, and we have shown that K is essential in M. 
Now, by Lemma 4.1 (b), # c °M; thus J 3 [M*, K] implies i e f -

Recall that a submodule TV of a module M is said to be a complement 
submodule if Af has no proper essential extension in M. RM is said to be a 
CS-module in case every complement submodule of M is a direct 
summand of M. R is a left C S-ring if /?# is a CS-module ( [1] ). The 
notation d(RM) indicates the Goldie dimension of M, and Qmax(B) w^ 
be used to denote the maximal left quotient ring of B. 

In the next theorem, Theorem 3.3 is applied in the case of the Goldie 
kernel functor to show how properties of M transfer to B and 
conversely. 

THEOREM 4.3. If RM is a nonsingular left R-module such that the standard 
Morita context (R, M, M*, B) satisfies: [M*, m] ¥= 0 whenever 0 ¥= m e M, 
and (M, M*) e % where <& is the Goldie topology on R, then'. 

(i) B is a left nonsingular ring with maximal left quotient ring 

QLX(B) = B= Horn, (M, M); 

(ii) B is a left CS-ring if and only if RM is a CS-module; 
(iii) d(RM) < oo if and only if d(BB) < oo, and in this case d(RM) = 

d(BB) and B is semisimple artinian. 

Proof (i) By [8], Theorem 8, o(M) = 0 implies o(B) = 0, hence, since by 
Lemma 4.2 ô is the Goldie kernel functor of B, this means BB is 
nonsingular. It is well known that the maximal left quotient ring of a left 
nonsingular ring is isomorphic to its injective hull (cf. e.g. [10], p. 149). 
Moreover, since o(M) = 0, we have M% = %(M), the ^-injective hull of 
M\ and since % is the Goldie topology, ^, and every ^-injective module is 
injective, M^ is injective; that is (see Section 2), M is a-dense, hence 
essential, in the a-torsionfree and injective module M^, showing that M^ 
= M, the injective hull of M. Now, by Corollary 10 of [8], we have the ring 
of quotients 

B% = Horn;? (Mg, M%) = Hom# (M, M); 

and, by Lemma 3.2 of [11], we have Bj = Qm3LX(B). 
(ii) Assume that B is a left CS-ring and let If be a complement 

submodule of M. By Theorem 3.3, IB(W) is a complement left ideal of B\ 
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hence, since B is left CS, IB(W) is a direct summand of B. Therefore, 
IB(W) = Be, where e = e2 e B, and we have 

W = [MIB(W) }a = [MBe]° = [Mef = Me; 

that is, W is a direct summand of M, and M is a CS-module. 
Conversely, assume that M is a CS-module and let / b e a complement 

left ideal of B. Then (MJ)° is a complement submodule of M, and hence a 
direct summand of M. Therefore, (MJ)° = Me, where e = e2 <E B. 
Then 

/ = / B [ (M/) a ] = /*[Me], 

by Theorem 3.2, and it is easy to see that IB[Me] = 2?e: clearly, e e 
IB(Me), implying that Be Q IB(Me) since IB(Me) is a left ideal of B\ on 
the other hand, if b e IB(Me), then, for any m G M, we have m/? = mje 
for some mx e M, and hence ra/?e = m^ 2 = mie = mb, showing that b = 
be G Be. Hence J = Be, that is / is a direct summand of B and B is left 
CS. 

(iii) Assume that d(BB) = m. Suppose that 2"Li © W, is a direct sum 
of submodules of M, and consider the sum 2/^=1 ^ ( W / ) of left ideals of 
B. If 

6 G iB(Wi) n 2 /*(»}), 

then 

Mb c ^ n S ^ - 0, 

hence Z? = 0 and the sum 2^=1 IB^W^IS direct, contradicting d(BB) = 
m. Therefore 

d(RM) ^m = d(BB). 

Now assume that d(RM) = n, and suppose that 2"=i © J\ is a direct 
sum of n 4- 1 nonzero left ideals of 5 . By Lemma 4.1 (c) (and by 
induction), the sum 2"=i «/f is also direct, hence we may assume, without 
loss of generality, that 

j t = J°9 / = 1, . . . , w + 1. 

Let 

wt = {MJt)
a n 2 (Mjky 

https://doi.org/10.4153/CJM-1984-013-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-013-4


204 SOUMAYA MAKDISSI KHURI 

Note that, since the join (M/,)° V (MJ2)° of (M/,)0 and (M/2)
CT in JSf"(A/) 

is [ (M/,)0 + (M/2)0]°, and since 

/ s : i f ( « M ) ^ ^ ( B J B ) 

is a lattice isomorphism, we have 

h{ [ (M/,)0 + ( M / 2 ) T } = h{ (MJtf V (M/2)0} 

= IB[ (MJ,f] V JB[ (MJ2)°\ 

= j x v y2 

= Ci + -/2) s 

Hence, by induction, 

h(Wt) = iB[(MJi)a] n iB 

= 0. 

f fS (M^)ff|a) = /, n [S /, 

Now, by the nondegeneracy condition, if U is a nonzero submodule of Af, 
then [Af*, JC] ^ 0 for 0 ^ x e £/, hence 

0 * [M*, x] ç 75(f/). 

Hence IB(Wt) = 0 implies ï^ = 0, showing that the sum 2"=i (Af/Z)a 

is direct, contrary to d(RM) = n. Hence d(BB) â n = d(RM), and we can 
conclude that d(RM) = d(BB). 

Finally, to see that B is semisimple artinian, we use Theorem 3.1 of [11], 
which states that B is semisimple artinian if and only if there is no infinite 
independent family of S -torsionfree left ideals of B. But here, since B is 
left nonsingular, that is Goldie torsionfree or S -torsionfree, every left 
ideal of B is S -torsionfree. Thus B is semisimple artinian if and only if 
d(BB) < 00. 
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