Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T21:55:01.664Z Has data issue: false hasContentIssue false

Density of Resonances for Strictly Convex Analytic Obstacles

Published online by Cambridge University Press:  20 November 2018

Johannes Sjöstrand*
Affiliation:
Centre de Mathématiques Ecole Polytechnique F-91128 Palaiseau Cedex France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We estimate the density of resonances close to a critical curve, for strictly convex obstacles with analytic boundary. Contrary to the C-case, already treated with Zworski, the estimates are in terms of dynamical quantities. A new feature in the proof is a certain averaging procedure.

Résumé

Résumé

Nous estimons la densité des résonances près d'une courbe critique, pour des obstacles strictement convexes à bord analytique. Contrairement au cas C, déjà traité avec Zworski, les estimations font appel aux quantités dynamiques. Une procédure de moyennisation est un aspect nouveau dans la demonstration.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

[BG] Babich, V.M. and Grigoreva, N.S., , Funktsional Anal, i Prilozhen. (1) 8 (1974), 7174.Google Scholar
[BaLR] Bardos, C., Lebeau, G. and Rauch, J., singularities, Invent. Math. 90 (1987), 77114.Google Scholar
[Be] Besse, A.,Manifolds all of whose geodesies are closed, Springer Verlag, 1978.Google Scholar
[BoS] Boutet de Monvel, L. and Sjostrand, J., Sur la singularity des noyaux de Bergman et de Szego, Asterisque 34-35 (1976), 12S-164.Google Scholar
[FZ] Filippov, V.B. and Zayev, A.B., Rigorous justification of the asymptotic solutions of sliding wave type, J. Soviet Math. (2) 30 (1985), 23952406.Google Scholar
[HaL] Hargé, T. and Lebeau, G., Diffraction par un convexe, Invent. Math. (1) 118 (1994), 161196.Google Scholar
[HS] Helffer, B. and J.Sjöstrand, Résonances en limite semiclassique, Bull. Soc. Math. France (3) 114, Memoire 24/25, (1986).Google Scholar
[L] Lebeau, G., pour la diffraction, Comment. Partial Differential Equations (15) 9 (1984), 14371494.Google Scholar
[P] Popov, G., Asymptotics of Green s functions in the shadow, C. R. Acad. Bulgare Sci. (10) 38 (1985), 1287. 1290.Google Scholar
[S1] Sjöstrand, J., Propagation of analytic singularities for second order Dirichlet problems, Comment. Partial Differential Equationa (1) 5 (1980), 4194.Google Scholar
[S2] Sjöstrand, J., Singularités analytiques microlocales, Astérisque 95 (1982).Google Scholar
[SZ1] Sjostrand, J. and Zworski, M., Estimates on the number of scattering poles near the real axis for strictly convex obstacles, Ann. Inst. Fourier (3) 43(1993), 169-190.Google Scholar
[SZ2] Sjostrand, J., The complex scaling method for scattering by strictly convex obstacles, Institut Mittag-Leffler 10, Ark. Mat., 19921993. preprint, to appear.Google Scholar