Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T13:02:38.322Z Has data issue: false hasContentIssue false

Darboux Properties and Applications toNon-Absolutely Convergent Integrals

Published online by Cambridge University Press:  20 November 2018

H. W. Ellis*
Affiliation:
Queen's University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper consists of two parts. The first contains an outline of the theorems and principal results and the second (§§2-6) gives proofs of the theorems and additional details. The theorems concern properties of Darboux continuous functions and functions having generalized Darboux properties. The corresponding results are shown to have interesting applications to the theory of non-absolutely convergent integrals.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1951

References

1. Bosanquet, L. S., Some properties of Cesaro-Lebesgue integrals, Proc. London Math. Soc. (2), vol. 49 (1945), 4062.Google Scholar
2. Burkill, J. C., The approximately continuous Perron integral, Math. Zeitschrift, vol. 34 (1931), 270278.Google Scholar
3. Burkill, J. C., The Cesaro-Perron scale of integration, Proc. London Math. Soc. (2), vol. 39 (1935), 541552.Google Scholar
4. Denjoy, A., Sur les fonctions dérivées sommables, Société Math, de France, vol. 43 (1915), 161248.Google Scholar
5. Ellis, H. W., Mean-continuous integrals, Can. J. Math., vol. 1 (1949), 113124.Google Scholar
6. Ellis, H. W., On the compatibility of the approximate Perron and the Cesaro-Perron integrals, Proc. American Mathematical Society, vol. 2 (1951), 396397.Google Scholar
7. Hobson, E. W., The theory of functions of a real variable and the theory of Fourier's series, vol. I, third edition (Cambridge, 1927).Google Scholar
8. Jacobsthal, E. and Knopp, K., Bemerkungen iiber die Struktur linearer Punktmengerr, Sitz. Berliner Math. Gesellshaft, vol. 14 (1915), 121129.Google Scholar
9. Jeffery, R. L. and Ellis, H. W., Cesàro Totalization, Trans. Royal Soc. of Canada, Third Series, Sec. III , vol. 35 (1942), 1944.Google Scholar
10. Lebesgue, H., Leçons sur V intégration et la recherche des fonctions primitives (Paris, 1904).Google Scholar
11. Rademacher, H., Eineindeutige Abbildungen und Meszbarkeit, Monatsh. fur Mathematik und Physik., vol. 27 (1916), 183290.Google Scholar
12. Ridder, J., Über die gegenseitigen Beziehungen verschiedener approximate stetiger Denjoy- Perr on Integrals, Fundamenta Mathematicae, vol. 22 (1934), 136162.Google Scholar
12´. Ridder, J., Denjoysche und Perronsche Integration, Math. Zeits., vol. 41 (1936), 184199.Google Scholar
13. Saks, S., Theory of the integral (Warsaw, 1937).Google Scholar
14. Sargent, W. L. C., A descriptive definition of Cesaro-Perron integrals, Proc. London Math. Soc. (2), vol. 47 (1941), 212247.Google Scholar