Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T01:03:22.709Z Has data issue: false hasContentIssue false

A Constructive Brauer-Witt Theorem for Certain Solvable Groups

Published online by Cambridge University Press:  20 November 2018

Allen Herman*
Affiliation:
Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, S4S 0A2 e-mail: aherman@math. uregina. ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Division algebras occurring in simple components of group algebras of finite groups over algebraic number fields are studied. First, well-known restrictions are presented for the structure of a group that arises once no further Clifford Theory reductions are possible. For groups with these properties, a character-theoretic condition is given that forces the p-part of the division algebra part of this simple component to be generated by a predetermined p-quasi-elementary subgroup of the group, for any prime integer p. This is effectively a constructive Brauer-Witt Theorem for groups satisfying this condition. It is then shown that it is possible to constructively compute the Schur index of a simple component of the group algebra of a finite nilpotent-by-abelian group using the above reduction and an algorithm for computing Schur indices of simple algebras generated by finite metabelian groups.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

[C] -Martin Cram, G., On the field of character values of finite solvable groups, Arch. Math. 51(1988), 294296.Google Scholar
[CR] Curtis, Charles W. and Reiner, Irving, Methods of Representation Theory: With Applications to Finite Groups and Orders, Wiley-Interscience, New York, 1981.Google Scholar
[F] Fontaine, Jean-Marc, Surla decomposition des algebres de groups, Ann. Scient. Ec. Norm. Sup. (4)4(1971), 121180.Google Scholar
[G] Gallagher, P. X., Group characters and normal Hall subgroups, Nagoya Math J. 21(1962), 223230.Google Scholar
[Her] Herman, Allen, Metabelian groups and the Brauer-Witt theorem, Comm. Alg. (11)23(1995), 4073-4086.Google Scholar
[Hup] Huppert, Bertram, Enliche Gruppen I, Springer-Verlag, Berlin, 1967.Google Scholar
[I] Isaacs, I. M., The Character Theory of Finite Groups, Academic Press, New York, 1976.Google Scholar
[I2] Isaacs, I. M., Extensions of group representations over arbitrary fields, J. Algebra 68(1981), 5474.Google Scholar
[J] Janusz, G. J., Generators for the Schur group of local and global number fields, Pacific J. Math. 56(1975), 525546.Google Scholar
[J2] Janusz, G. J., Some remarks on Clifford's Theorem and the Schur index, Pacific J. Math. 32(1970), 119125.Google Scholar
[L] Lorenz, Falko, Über die Berechnung der Schurshen indizes von Charakteren endlicher Gruppen, J. Number Theory 3(1971), 60103.Google Scholar
[MW] Manz, Olaf and Wolf, Thomas R., Representations of Solvable Groups, London Mathematical Society Lecture Note Series 185, Cambridge University Press, Cambridge, 1993.Google Scholar
[P] Passman, D. S., The Algebraic Structure of Group Rings, Wiley and Sons, New York, 1977.Google Scholar
[Roq] Roquette, P., Arithmetische Untersuchung des Charakterringes einer endlichen Gruppen, J. Reine Angew. Math. 190(1952), 148168.Google Scholar
[Rit] Ritter, Jürgen, Über eine Erweiterung der Witschen Reduktion bei der Bestimmung der Schurindizes von endlichen Gruppen über lohalen Körpen, Arch. Math. 29(1977), 7891.Google Scholar
[Sch] Schmidt, Peter, Schur indices and Schur groups, J. Algebra 169(1994), 226247.Google Scholar
[Sc] Scott, W. R., Group Theory, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.Google Scholar
[Sh] Shirvani, M., The structure of simple rings generated by finite metabelian groups, J. Algebra 169(1994), 686712.Google Scholar
[W] Witt, E., Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper, J. Reine Angew. Math. 190(1952), 231245.Google Scholar
[Y] Yamada, T., The Schur Subgroup of the Brauer Group, Lecture Notes in Mathematics 397, Springer-Verlag, Berlin, 1974.Google Scholar