Published online by Cambridge University Press: 20 November 2018
Coinitial graphs were used in [2; 3 ; 4] as a combinatorial tool in the Reidemeister- Schreier process in order to prove subgroup theorems for Fuchsian groups. Whitehead had previously introduced such graphs but used topological methods for his proofs [8; 9]. Subsequently Rapaport [7] and Iliggins and Lyndon [1] gave algebraic proofs of the results in [9], and AIcCool [5; 6] has further developed these methods so that presentations of automorphism groups could be found.
In this paper it is shown that Whitehead automorphisms can be described by a “cutting and pasting” operation on coinitial graphs. Section 1 defines and gives some combinatorial properties of these operations, based on [1].