Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T06:35:47.613Z Has data issue: false hasContentIssue false

Centre-valued Index for Toeplitz Operators with Noncommuting Symbols

Published online by Cambridge University Press:  20 November 2018

John Phillips
Affiliation:
Department of Mathematics and Statistics, University of Victoria, Victoria, B.C. V8W 2Y2 e-mail: [email protected]
Iain Raeburn
Affiliation:
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We formulate and prove a “winding number” index theorem for certain “Toeplitz” operators in the same spirit as Gohberg–Krein, Lesch and others. The “number” is replaced by a self-adjoint operator in a subalgebra $Z\,\subseteq \,Z\left( A \right)$ of a unital $C*$-algebra, $A$. We assume a faithful $Z$-valued trace $\tau $ on $A$ left invariant under an action $\alpha :\,\text{R}\,\to \,\text{Aut}\left( A \right)$ leaving $Z$ pointwise fixed. If $\delta $ is the infinitesimal generator of $\alpha $ and $u$ is invertible in $\text{dom}\left( \delta \right)$, then the “winding operator” of $u$ is $\frac{1}{2\pi i}\tau \left( \delta \left( u \right){{u}^{-1}} \right)\,\in \,{{Z}_{sa}}$. By a careful choice of representations we extend $\left( A,\,Z,\,\tau ,\,\alpha \right)$ to a von Neumann setting $\left( \mathfrak{A},\,\mathfrak{Z},\,\bar{\tau },\,\bar{\alpha } \right)$ where $\mathfrak{A}\,=\,{A}''$ and $\mathfrak{Z}\,=\,{Z}''$. Then $A\,\subset \,\mathfrak{A}\,\subset \,\mathfrak{A}\,\rtimes \,\mathbf{R}$, the von Neumann crossed product, and there is a faithful, dual $\mathfrak{Z}$-trace on $\mathfrak{A}\,\rtimes \,\mathbf{R}$. If $P$ is the projection in $\mathfrak{A}\,\rtimes \,\mathbf{R}$ corresponding to the non-negative spectrum of the generator of $\mathbf{R}$ inside $\mathfrak{A}\,\rtimes \,\mathbf{R}$ and $\tilde{\pi }:\,A\,\to \,\mathfrak{A}\,\rtimes \,\mathbf{R}$ is the embedding, then we define ${{T}_{u}}\,=\,P\tilde{\pi }\left( u \right)P\,\text{for}\,u\,\in \,{{A}^{-1}}$ and show it is Fredholm in an appropriate sense and the $\mathfrak{Z}$-valued index of ${{T}_{u}}$ is the negative of the winding operator. In outline the proof follows that of the scalar case done previously by the authors. The main difficulty is making sense of the constructions with the scalars replaced by $\mathfrak{Z}$ in the von Neumann setting. The construction of the dual $\mathfrak{Z}$-trace on $\mathfrak{A}\,\rtimes \,\mathbf{R}$ requires the nontrivial development of a $\mathfrak{Z}$-Hilbert algebra theory. We show that certain of these Fredholm operators fiber as a “section” of Fredholm operators with scalar-valued index and the centre-valued index fibers as a section of the scalar-valued indices.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[AP] Anderson, J. andPaschke, W., The rotation algebra. Houston J. Math. 15(1989), 126.Google Scholar
[Arv] Arveson, W. , Subalgebras of C*-algebras. Acta Math. 123(1969), 141224. http://dx.doi.Org/10.1007/BF02392388 Google Scholar
[Brl] Breuer, M., Fredholm theories in von Neumann algebras, I. Math. Ann. 178(1968), 243254. http://dx.doi.Org/10.1007/BF01350663 Google Scholar
[Br2] Breuer, M., Fredholm theories in von Neumann algebras, II. Math. Ann., 180(1969), 313325. http://dx.doi.Org/10.1016/0022-1236(90)90133-6 Google Scholar
[Co] Connes, A., Noncommutative differential geometry. Publ. Math. Inst. Hautes Etudes Sci. 62 (1985), 41144.Google Scholar
[CMX] Curto, R., Muhly, P. S., and Xia, J., Toeplitz operators onflows. J. Funct. Anal. 93(1990), 391450.Google Scholar
[Dix] Dixmier, J., Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris, 1969.Google Scholar
[DM] H.|Dym and H. P.|McKean, Fourier series and integrals. Academic Press, New York, 1972.Google Scholar
[H] Hôrmander, L., The Weyl calculus of pseudodifferential operators. Comm. Pure Appl. Math. 32(1979), 359443. http://dx.doi.org/10.1002/cpa.3160320304 Google Scholar
[Ji] Ji, R., Toeplitz operators on noncommutative tori and their real-valued index.Proc. Sympos. Pure Math. 51, Amer. Math. Soc. Providence, RI, (1990), pp. 153158.Google Scholar
[K] Kaplansky, I., Modules over operator algebras. Amer. J. Math. 75(1953), 839858. http://dx.doi.org/10.2307/2372552 Google Scholar
[L] Lance, E. C., Hilbert C*-modules. London Math. Soc. Lecture Notes Series 210, Cambridge University Press, Cambridge, 1995.Google Scholar
[Le] Lesch, M., On the index of the infinitesimal generator of a flow. J. Operator Theory 26(1991), 7392.Google Scholar
[PR] Packer, J. A. and Raeburn, I., On the structure of twisted group C* -algebras. Trans. Amer. Math. Soc. 334(1992), 685718.Google Scholar
[Pa] Paschke, W., Inner product modules over B* -algebras. Trans. Amer. Math. Soc, 182(1973), 443468.Google Scholar
[Ped] Pedersen, G. K., C*-algebras and their automorphism groups. Academic Press, London, 1979.Google Scholar
[Ph] Phillips, J., Spectral flow in type I and II factors-a new approach. Fields Inst. Commun., 17(1997), 137153.Google Scholar
[PhR] Phillips, J. and Raeburn, I., An index theorem for Toeplitz operators with noncommutative symbol space. J. Funct. Anal. 120(1994), 239263. http://dx.doi.Org/10.1006/jfan.1994.1032 Google Scholar
[R] Rieffel, M., Morita equivalence for C* -algebras and W*-algebras. J. Pure Appl. Algebra 5(1974), 5196. http://dx.doi.Org/10.1016/0022-4049(74)90003-6 Google Scholar
[T] Tomiyama, J., On the projection of norm one in W*-algebras. Proc. Japan Acad. Ser. A Math.Sci. 33(1957), 608612. http://dx.doi.Org/10.3792/pja/1195524885 Google Scholar
[U] Umegaki, H., Conditional expectation in an operator algebra I. Tohôku Math. J. 6(1954), 358362. http://dx.doi.org/10.2748/tmjV1178245177 Google Scholar