Article contents
A Cancellation Theorem for Modules Over the Group C*-Algebras of Certain Nilpotent Lie Groups
Published online by Cambridge University Press: 20 November 2018
Extract
In recent years, there has been a rapid growth of the K-theory of C*-algebras. From a certain point of view, C*-algebras can be treated as “non-commutative topological spaces”, while finitely generated projective modules over them can be thought of as “non-commutative vector bundles”. The K-theory of C*-algebras [30] then generalizes the classical K-theory of topological spaces [1]. In particular, the K0-group of a unital C*-algebra A is the group “generated” by (or more precisely, the Grothendieck group of) the commutative semigroup of stable isomorphism classes of finitely generated projective modules over A with direct summation as the binary operation. The semigroup gives an order structure on K0(A) and is usually called the positive cone in K0(A).
Around 1980, the work of Pimsner and Voiculescu [18] and of A. Connes [4] provided effective ways to compute the K-groups of C*-algebras. Then the classification of finitely generated projective modules over certain unital C*-algebras up to stable isomorphism could be done by computing their K0-groups as ordered groups. Later on, inspired by A. Connes's development of non-commutative differential geometry on finitely generated projective modules [2], the deeper question of classifying such modules up to isomorphism and hence the so-called cancellation question were raised (cf. [21] ).
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1987
References
- 19
- Cited by