Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T15:33:13.551Z Has data issue: false hasContentIssue false

Alternative Metrization Proofs

Published online by Cambridge University Press:  20 November 2018

Dale Rolfsen*
Affiliation:
The University of Wisconsin
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Alternative methods of proving several classical metrization theorems are offered in this paper, showing that they follow by elementary methods from an early theorem of Alexandroff and Urysohn. A simplified proof of the latter theorem is also given. Theorem 5 and a corollary to Theorem 3 state the main results.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1966

References

1. Alexandroff, P. and Urysohn, P., Une condition nécessaire et sufficiante pour qu'une classe (L) soit une classe (B), Compt. Rend. Acad. Sri., 177 (1923), 12741276.Google Scholar
2. Bing, R. H., Metrization of topological spaces, Can. J. Math., 3 (1951), 175186.Google Scholar
3. Chittenden, E. W., On the equivalence of écart and voisinage, Trans. Amer. Math. Soc, 18 (1917), 161166.Google Scholar
4. Chittenden, E. W., On the metrization problem and related problems in the theory of sets, Bull. Amer. Math. Soc., 33 (1927), 1334.Google Scholar
5. Frink, A. H., Distance functions and the metrization problem, Bull. Amer. Math. Soc., 43 (1937), 133142.Google Scholar
6. Kelley, J. L., General topology (Princeton, 1955).Google Scholar
7. Nagata, J., On a necessary and sufficient condition of metrizability, J. Inst. Polytech. Osaka City Univ., Sen A, 1 (1950), 93100.Google Scholar
8. Smirnov, Yu., A necessary and sufficient condition for metrizability of a topological space., Dokl. Akad. Nauk SSSR, NS, 77 (1951), 197200.Google Scholar
9. Smith, M. B. Jr., A new proof of certain metrization theorems, Can. J. Math., 15 (1963), 2533.Google Scholar
10. Tychonoff, A., über einen Metrizationssatz von P. Urysohn, Math. Ann., 95 (1926), 139142.Google Scholar
11. Urysohn, P., Zum Metrizationsproblem, Math. Ann., 94 (1925), 309315.Google Scholar
12. Vickery, C. W., Axioms for Moore space and metric spaces, Bull. Amer. Math. Soc, 46 (1940), 560564.Google Scholar