
ALTERNATIVE METRIZATION PROOFS 

DALE ROLFSEN 

Alternative methods of proving several classical metrization theorems are 
offered in this paper, showing that they follow by elementary methods from 
an early theorem of Alexandroff and Urysohn. A simplified proof of the latter 
theorem is also given. Theorem 5 and a corollary to Theorem 3 state the main 
results. 

A metric d for a set X is a non-negative function on X X X satisfying, 
for any x, y, z in X: 

(1) d(x, y) — 0 <=> x = y, 

(2) d(x, y) = d(y, x), and 

(3) d(x,y) +d(y,z) >d{x,z). 

For r > 0 and x Ç X, the set Sd(x, r) = {y: d(x, y) < r} is called the 
sphere about x of radius r. The collection of all spheres is a basis for a unique 
topology on X, called the metric topology induced by d. ( A subcollection B 
of a topology T is a basis for T if and only if each member of T, i.e. open set, 
is the union of some subcollection of B. Equivalently, whenever x £ U G T, 
a member of B contains x and is a subset of U.) A topological space (X, T) 
is said to be metrizable if there exists a metric for X that induces the topology T. 

In 1925 Urysohn (11) established the important result that "a Hausdorff 
space with a countable basis is metrizable if and only if it is normal; Tychonoff 
(10) showed the next year that * 'normal" may be replaced by * 'regular." 
Urysohn's proof depended on his famous "lemma" stating that, in a normal 
space, for any disjoint pair of closed sets there exists a continuous function 
on the space into the unit interval which takes the value 0 on one closed set 
and 1 on the other. Thus a class of continuous functions was available to 
define a metric. 

Similar methods were later used by R. H. Bing (2) to obtain a necessary 
and sufficient condition for metrizability of arbitrary topological spaces (see 
Theorem 5(hi)), and by J. Nagata (7) and Yu. Smirnov (8) in different ways 
to improve this condition (Theorem 5(iv)). 

The use of Urysohn's lemma and the step of establishing normality are 
bypassed in the present proofs, which exploit the fact that these conditions 
involve certain countability requirements on the basis for the topology. By 
manipulating the basis elements directly, we link the conditions to the 
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Alexandroff-Urysohn theorem ( l ) of 1923 (Theorem 5(i)), which in turn has 
a straightforward "geometric" proof. 

1. Developments for a topological space. Let (X, T) be a topological 
space, x G X, A C X, and K be a collection of sets covering X. Then Star (̂ 4, K) 
denotes the union of all those members of K that intersect Ay and Star(x, K) 
denotes Star({x}, K). 

A sequence will be understood to be a function whose domain is co, the set 
of non-negative integers. A sequence G is a development for (X, T), or simply 
X, provided (i) for each n G co, Gn is a collection of open sets covering X, 
and (ii) for every U G T and x £ U there exists ?z G co such that 

Star(x, Gn) £_ U. 

Thus in particular VJ{Gw:w G co} is a basis for the topology. If such a sequence 
exists, X is said to admit the development G. 

The following special types of developments G will be considered: 

Regular (after Alexandroff-Urysohn). For each n G co, whenever two 
members of Gn+i intersect, their union is a subset of some member of Gn. 

Neighbourhood-star. For each U (z T and x G U, there exist n £ œ and a 
neighbourhood iV of x such that Star(iV, Gn) C U. 

Any development G can be improved in that another development H for the 
space may be constructed such that H0 D Hi 3 • • . and also Hn refines Gn 

for each n. (A covering K refines a covering Kf provided each member of K 
is a subset of some member of K'. To obtain H, first let Fo = G0 and 

T^+i = {g C\f: g e Gn+iJ € Fn) for n G co, 

so that Fn+i refines both Fn and Gn+i. Then define Hm = W{/<V i > w} for 
each w Ç w.) Thus if G is a neighbourhood-star development, so is H. 

THEOREM 1. A topological space admits a regular development if and only if 
it admits a neighbourhood-star development. 

Proof. Any regular development H for (X, T) is also a neighbourhood-star 
development. For if x G U G T, an n may be chosen so that Star (x, Hn-i) C U. 
But since H is regular, 

Star (Star (x, Hn), Hn) C Star(x, Hn-\) C 27. 

Thus the required neighbourhood of x is Star(x, Hn). 
Now suppose that G is a neighbourhood-star development for X. It may be 

assumed that Go D G\ 3 . . . . For convenience, we say that a member g of 
Go is "little" in a covering K provided whenever a member g' of r\{Gn: g G Gn) 
intersects g, g W g' is a subset of an element of i£. Define i?0 = Go and for each 
n G co, let .Hrc+i consist of all members of Gn+\ that are little in Hn. If it is 
granted that each Hn covers X, H is clearly a development for X. But H is 
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regular, for suppose n G co and h, h' are members of Hn+\ that intersect. Since 
both h and In! are little in Hn and either 

V G H {Gm: A G Gm} or ^ H {Gw: A7 G Gm} 

(or both) hold, it follows that h \J h! is a subset of a member of 27w. 
The proof is completed by showing inductively that each Hn is a covering. 

Clearly Ho covers X. Assume that n G œ and Hn covers X, and choose any 
x G X. Then a member A of Hn contains x. Since Go D Gi D . . . , there exists 
a neighbourhood iV of # and an integer m larger than n such that 

Star(iV,Gt.) C * 

whenever i > m. Then an integer j > m may be chosen such that 

Star(x, Gj) C N. 

Finally choose a gx in G.? such that x G g .̂ Now gx is little in Hny for if 

^ H {G*: & € G*} 

and g' intersects g ,̂ we have g' G G y and 

fo U g' C Star (Star (*, Gy), G;) C Star(iV, G;) C A G fl». 

But also ĝ  G G^ C Gw+i; so gx is a member of Hn+i containing x. Thus i^+i 
covers X, completing the induction. 

2. The Alexandroff-Urysohn theorem. In 1917, Chittenden (3) proved 
that a space is metrizable if and only if the topology can be defined by a 
uniformly regular écart, i.e. a distance function d satisfying (1) and 

(4) for some fixed function /(e) that approaches 0 with e, if d(x, y) < e and 
d(z, y) < e, then d(x, z) < / ( e ) . 

The following theorem was proved first as an easy corollary (with/(e) = 2e), 
but Frink (5) gave a greatly simplified direct proof in 1937. The proof here 
differs only in having a perhaps more natural method of showing that "chains" 
of open sets which have been assigned a sufficiently small numerical "length" 
really are short; still another method was given by Marion Smith (9). 

THEOREM 2 (Alexandroff-Urysohn). A topological space is metrizable if and 
only if it is Hausdorff and admits a regular development. 

Proof. Trivially any metric space is Hausdorff, and if, for n G w, Gn is the set 
of all spheres of radius 2~n, the sequence G is clearly a regular development for 
the space. 

To prove the converse, suppose (X, T) is a Hausdorff space and that G is 
a regular development for X. It is convenient to define a new development F 
as follows. Let 

Em = VJ {Gt: ^ > w}, m G co. 
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Then let F0 = E0 U \X) and Fn = E^n if n > 0. Any finite subcollection 
C of ,Fo will be called a c/www if its distinct elements may be ordered / i , . . . , /* 
in such a way that /* intersects fi+i whenever 0 < i < k. Let C* denote the 
union of the members of C. It is evident that £ is a regular development and 
that Eo D Ei Z) . . • • Thus F is a regular development such that (i) 
î o D ft D . . . and (ii) for each n G co, if C is a chain of four or fewer members 
of Fn+i, then C* is a subset of some member of Fn. 

A "size" ju(/) is assigned to each/ G ^o as follows: if / G Fn for every w Ç w, 
let /x(/) = 0; otherwise let m be the largest integer such that f (z Fm and 
define /*(/) = 2"w. Notice that /*(/) < 2~n if and only if / G fB> and since 
the space is Hausdorff, only a singleton can have size zero. Further, define 
the "length" X(C) of a chain C to be the sum of the sizes of its distinct members, 
i.e. X(C) = E/€c/*( /) . 

LEMMA 1. Suppose C is a chain and X(C) < 2~n for somen G co. !TAe» C* is 
a subset of some member of Fn. (Proof postponed.) 

Now to define the metric, for any x and y'mX let 

(5) d(x, y) = g.l.b. {X(C): C is a chain, x G C * j G C*}. 

Since {X} is a chain, d is well defined (and bounded above by 1). 
For each x G X, r > 0, and w G co, it follows from (5) that 

(6) Sd(x,r) = U {C*: Cis a chain, X(C) < r, x G C*}, 

and hence by Lemma 1, 

(7) x G Sd(x, 2~w) C Star(x, Fn). 

We now show that d is a metric. Condition (2) is obvious. To see that (1) 
holds, suppose x = y. Then for each n G o>, some member / o f Fn contains x 
(and hence y). But X({/}) < 2~n, so d(x, y) < 2~n for all w. Thus d(x, y) = 0. 
Now suppose that x ^ y . Then since X is Hausdorff, y g Star(x, Fm) for 
some m G co. By (7), y £ Sd(x, 2"m), and so d(x, y) > 2~m > 0. 

To verify (3), let x, y, z G X and suppose that e > 0. Then there exist 
chains C\ and Ci such that G* contains x and y, C2* contains 3̂  and s, 
X(Ci) < d(x, 3>) + t, and X(C2) < d(;y, z) + e. It is evident that some sub-
collection C of C\ \J C2 is a chain such that C* contains x and 2. But then 

X(C) < X(Ci) + X(C2) < d(*, y) + d(y, z) + 2e. 

Thus d(x, z) < d(x, y) + d(y, z) + 2e for every e > 0, and (3) follows. 
Finally, the set of spheres is a basis for T. For (6) implies that every sphere 

is an open set, and by (7) and the fact that F is a development, whenever 
x G U G T some sphere contains x and lies in U. 

Proof of Lemma 1 (by induction on the number of members of C). If C 
has one member, the lemma is immediate. Assume that C has exactly m 
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members, m > 1, and that the lemma has been established for all chains of 
fewer members. Let fh . . . , fm be an ordering of the members of C, where 
ft intersects fi+i if i < m. Supposing that \(C) < 2~n, we distinguish three 
cases. 

Case 1: for some i, ju(/*) = 2~n. Then the remaining members of C must be 
singletons, so C* = ft £ Fn. 

In the following non-trivial cases, C will be divided into three proper sub-
collections, Ci, C2, C3, such that each is a chain of length at most 2~{n+l\ C2* 
intersects both G* and C3*, and C = C\ \J Ci \J Cz. Then by the inductive 
assumption, there exist members gj of Fn+i such that C* C gj (j = 1, 2, 3). 
But \gi, g2, gz} is then a chain of members of Fn+\\ so by property (ii) of F 
it follows that gi U £2 W £3 (and hence C*) is a subset of some member of 
Fn, which is the desired situation. 

Case2: for some i, /*(/*) = 2~(w+1). Here define C2 = {/*}, Ci = {/1, . . . , / * - i } , 
and C3 = {/i+i, . • • ,/m}» so that each has length no more than 2~(7l+1). (In 
case i is 1 or m, let Ci or C3, respectively, be {/*} instead.) 

Case 3: /*(/*) < 2 - (w+2) for every i. Let £ be the largest integer strictly less 
than m such that X(G) < 2~(7î+1) if Ci = {fh . . . , / „ } ; then let g be the least 
integer greater than 1 for which X(C3) < 2~(n+1), where C3 = {fq, . . . ,fm}. 
Uq < p + 1, define C2 = {jP}. On the other hand, i f l < £ < £ + l < g < m , 
we see that G and C3 must have length at least 2~(w+2), because their maxi­
mal ly ensures that no more of the smal l / / s could have been annexed without 
exceeding the length of 2~~{n+l). Defining, in this situation, 

G = {fp+i, • • • ,/ff-i} 
it follows that 

X(G) < 2"w - X(G) - X(C8) < 2~n - 2-(n+v - 2 - W ) = 2-<n+1>. 

This completes the last case and the induction. 

3. Other metrization theorems. The next theorem is a special case of 
Theorem 4. But its proof, suggested by J. Martin, is more transparent and 
motivates the latter's proof. 

THEOREM 3. Any regular space with a countable basis admits a neighbourhood-
star development. 

Prooj. Suppose {bo, bi, . . .} is a countable basis for the regular space (X, 7"). 
Whenever Cl (bt) C bjf define 

E(iJ) = {bj9X-Cl(bt)}9 

a pair of open sets covering X (CI = closure). Let G be a sequence with range 
{E(i,j):Cl(b,)Cb,}. 

Now if x Ç U G T, we can choose j such that x 6 bj C U\ and, by regularity, 
an i may be chosen such that x G bt and CI (bi) C bj. If Gn = E(i,j), then 
Star(bi, Gn) = bj C U. So G is a neighbourhood-star development for X. 
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COROLLARY (Urysohn-Tychonoff) . A space with a countable basis is metrizable 
if and only if it is regular and Hausdorff; cf. (10). 

Proof. Metric spaces are regular and Hausdorff, and Theorems 1, 2, and 3 

supply the converse. 

The following terminology will be used in the remaining theorems. A collec­
tion of point sets will be called discrete {locally finite) provided each point has 
a neighbourhood t h a t intersects a t most one (only finitely many) of the 
members of the collection. A collection is a-discrete or a-locally finite if it is the 
union of countably many collections, each being discrete or locally finite, 
respectively. Clearly discrete collections are locally finite; and if S is any 
subcollection of a locally finite collection, it is easy to check t h a t VJ{Cl(s): 
5 G S) is closed. 

A direct extension of the proof of Theorem 3 shows t h a t any regular space 
with a cr-discrete basis admits a neighbourhood-star development. T o prove 
the more general cr-locally finite case, the next lemma supplies first a convenient 
improvement to any cr-locally finite basis. 

L E M M A 2. Suppose (X, 7") is a topological space with a a-locally finite basis. 
Then there exists a sequence D with the following two properties: 

(i) If m G co, Dm is a locally finite collection of open sets. 
(ii) For each U G T and x G U, there exists n G co such that some subset of U 

is a member of Dn and is the only member of Dn that contains x. 

Proof. Let U {Ak: k G co} be a basis for T for which each Ak is a locally 
finite collection. For each i,j G co, let B(i,j) consist of all sets of the form 
a0 r\ . . . r\ dj, where a0, . . . , a,j are distinct members of At. Thus B(i,j) 
is a collection of (perhaps empty) open sets. T o see t h a t B(i,j) is locally 
finite, notice t h a t each point has a neighbourhood intersecting only finitely 
many , say m, members of At. Bu t then the number of members of B(i,j) 
t h a t intersect the neighbourhood is a t most the number of combinations of m 
objects taken j + 1 a t a t ime, i.e. finite. If D is any sequence whose range is 
{B(i,j): i,j G co}, D satisfies (i). 

T o verify (ii), suppose t ha t x G U G T. Since U {Ak: k G co} is a basis, for 
some i G co a t least one member a' of A t contains x and is a subset of U. If 
j + 1 denotes the number of members of A t containing x, b = C\ {a: x G a G A^ 
is the only member of B(i,j) t h a t contains x. Fur ther , b C a! C U. This 
completes the proof of the lemma. 

T H E O R E M 4. Any regular space with a o--locally finite basis admits a neighbour­
hood-star development. 

Proof. Suppose (X, T) is regular and has a c-locally finite basis. Then there 
is a sequence D satisfying (i) and (ii) of Lemma 2. For i,j, k G co we define 
the following collections. Q(i,j,k): all ordered triples (a, b, c) such t ha t 
a G Dub G Djtc G Dk, Cl (a) C b, and Cl (b) C c.A{i,j, k) and B(i,j, k): all 
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first and second members, respectively, of the triples in Q(i,j, k). E(i,j, k): 
the collection B(iyj, k) together with the single open set 

X - U { C l ( a ) : a Ç A(i,j,k)}. 

Then E(i,j, k) is an open covering of X. 
Finally, letting G be a sequence with {E(i,j, k): i,j, k £ co} as its range, it 

will be shown that G is a neighbourhood-star development for X. 
Suppose x € U € T. Then by property (ii) of D and regularity of the space, 

integers k, j , and i may be chosen, in that order, such that c' C U, Cl(ô') C c', 
and Cl (a') C b', where each of a', br, d is the unique member of Du D;, Dk, 
respectively, that contains the point x. Note that (a', br, c') is a member of 
Q(i,j, *) .Nowlet 

K = U {Cl(6): 6 € £(*', j , *) , CI(6) <Z t'\, 

a closed set. Also x Q K, for otherwise some member of Dk other than c' would 
contain x, which is impossible. Hence N = a' — K is a neighbourhood of x, 
and 

Star (# , £ ( i , j , *)) C W ( Ô : K S( i , j , *) , CI (6) C J] Cc' QU. 

Since for some n G w, C7W = E(i,j,k), we have Star(iV, Gw) C Î7, just as 
required. 

The metrization results are now collected. 

THEOREM 5. Each of the following is a necessary and sufficient condition for 
a topological space to be metrizable: 

(i) The space is Hausdorff and admits a regular development. 

(ii) The space is Hausdorff and admits a neighbourhood-star development. 

(iii) The space is regular, Hausdorff, and has a a-discrete basis. 

(iv) The space is regular, Hausdorff, and has a a-locally finite basis. 

Proof. The equivalence of (ii) to (i) and (i) to metrizability follows from 
Theorems 1 and 2. But (iii) implies (iv) and by Theorem 4, (iv) implies (ii). 
The proof is completed by noting that metrizability implies (iii), using Stone's 
paracompactness result (6, p. 129) and the fact that metric spaces are regular 
and Hausdorff. 

Remark. A space is automatically regular if it admits either a regular or 
neighbourhood-star development. For suppose G is a neighbourhood-star 
development and x is a point in the open set U. Then there is an open set N 
such that x G N and Star(iV, Gn) C U. But Cl(iV) C Star (TV, Gn). 

Thus the condition of Hausdorff in Theorem 5 may be replaced in each case 
by To, which merely requires that for any two points there be an open set 
containing just one, since a regular TV-space is Hausdorff (A. Mazur). 
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