No CrossRef data available.
Published online by Cambridge University Press: 07 May 2019
We consider a multimarginal transport problem with repulsive cost, where the marginals are all equal to a fixed probability $\unicode[STIX]{x1D70C}\in {\mathcal{P}}(\mathbb{R}^{d})$. We prove that, if the concentration of $\unicode[STIX]{x1D70C}$ is less than $1/N$, then the problem has a solution of finite cost. The result is sharp, in the sense that there exists $\unicode[STIX]{x1D70C}$ with concentration $1/N$ for which the cost is infinite.