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Marginals with Finite Repulsive Cost

Ugo Bindini

Abstract. We consider a multimarginal transport problem with repulsive cost, where the marginals
are all equal to a ûxed probability ρ ∈ P(Rd). We prove that, if the concentration of ρ is less than 1/N ,
then the problem has a solution of ûnite cost. he result is sharp, in the sense that there exists ρ with
concentration 1/N for which the cost is inûnite.

1 Introduction

Consider a system of N unitary-charged particles of negligiblemass under the eòect
of the Coulomb force. We can describe the stationary states using a wave-function
ψ(x1 , . . . , xN), where x j ∈ R3; via the Born interpretation, ∣ψ(x1 , . . . , xN)∣

2 can be
viewed as the density of the probability that the particles occupy the positions x1 , . . . ,
xN , and it is symmetric, since the particles are indistinguishable.

When the semi-classical limit is considered, as already proved in [2, 7, 8, 16], the
stationary states reach theminimum of potential energy, i.e.,

(1.1) V0 = min
ψ

V(ψ) = min∫
R3N

c(x1 , . . . , xN) ∣ψ(x1 , . . . , xN)∣
2 dx1⋯dxN ,

where c is the Coulomb (potential) cost function c∶ (R3)N → R deûned as

c(x1 , . . . , xN) = ∑
1≤i< j≤N

1
∣x i − x j ∣

.

his can also be viewed as the exchange correlation functional linking the Kohn–
Sham to theHohenberg–Kohn approach; see, for instance, [13].

Given any wave-function ψ, deûne its single-particle density as

ρ
ψ
(x) = ∫

R3(N−1)
∣ψ(x , x2 , . . . , xN)∣

2 dx2⋯dxN ,

which is quite natural from the physical point of view, since the charge density is a
fundamental quantum-mechanical observable.

It is a well-known result by Lieb [17] (see also Levy [15]) that the set of all possible
marginal densities is

R = { ρ ∈ L
1
(Rd) ∣ ρ ≥ 0,

√
ρ ∈ H

1
(Rd),∫

Rd
ρ(x)dx = 1} .

One can thus consider

C(ρ) = min{∫
R3N

c(x1 , . . . , xN) ∣ψ(x1 , . . . , xN)∣
2 dx1⋯dxN ∣ ρ

ψ
= ρ} ,
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and factorize the original minimum problem (1.1) as

V0 = min
ρ∈R

min
ρψ
=ρ
V(ψ) = min

ρ
C(ρ).

his is a well-known approach, which dates back to homas and Fermi, and was
later revised by Hohenberg and Kohn [14], Levy [15], and Lieb [17], whose questions
are still sources of ideas for this ûeld.

In this paper, we ûrst generalize the physical dimension d = 3 to any d ≥ 1. More-
over, we adopt ameasure-theoretic approach: instead of considering wave-functions,
we set the problem for every probability over (Rd)N and formulate the corresponding
relaxedminimum problem

C(P) = min∫
(Rd)N

c(x1 , . . . , xN)dP(x1 , . . . , xN),

where P ∈ P((Rd)N) is a probability measure. In this fashion, the single-particle
density constraint gives rise to a multi-marginal optimal transport problem of the
form

(1.2) C(ρ) = inf {∫
(Rd)N

c(x1 , . . . , xN)dP(x1 , . . . , xN)∣

P ∈ P((Rd)N
), π i

#P = ρ, i = 1, . . . ,N} ,

where ρ is a ûxed probability measure over Rd and π i is the projection over the i-th
factor of (Rd)N . It is a simple and well-known observation that the inûmum (1.2) is
equal to

(1.3) C(ρ) = inf {∫
(Rd)N

c(x1 , . . . , xN)dP(x1 , . . . , xN)∣

P ∈ P((Rd)N
), P symmetric , π i

#P = ρ, i = 1, . . . ,N} .

In order to give an even stronger result, we take as a cost function a general repul-
sive potential, as in the following deûnition.

Deûnition 1.1 A function c∶ (Rd)N → R is a repulsive cost function if it is of the
form

c(x1 , . . . , xN) = ∑
1≤i< j≤N

1
ω(∣x i − x j ∣)

,

where ω∶R+ → R+ is continuous, strictly increasing, and diòerentiable on (0,+∞),
with ω(0) = 0.

Although there are many works about this formulation, and the multi-marginal
transport problem in general (see for instance [3, 5, 6, 9, 10]), none of them gives a
condition on ρ that assures that the inûmumin (1.3) isûnite. We found that the correct
quantity to consider is the one given by the following deûnition.

Deûnition 1.2 If ρ ∈ P(Rd), the concentration of ρ is

µ(ρ) = sup
x∈Rd

ρ({x}).
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his allows us to state themain result.

heorem 1.3 Let c be a repulsive cost function, and let ρ ∈ P(Rd) with

(1.4) µ(ρ) <
1
N

.

hen the inûmum in (1.3) is ûnite.

Remark 1.4 A�er this paper was submitted, the author became aware of an inde-
pendentwork in preparation by F. Stra, S.DiMarino, andM.Colombo about the same
problem. he techniques are diòerent and the second result, although not yet available
in preprint form, seems to be closer in the approach to some arguments in [3].

Structure of the paper In Section 2 we give some notation and collect some deûni-
tions, constructions, and results to be used later. In particular, we state and prove a
simple but useful result about partitioning Rd into measurable sets with prescribed
mass.

We then show in Section 3 that condition (1.4) is sharp; i.e., given any repulsive
cost function, there exists ρ ∈ P(Rd)with µ(ρ) = 1/N , and C(ρ) =∞. he construc-
tion of this counterexample is explicit, but it is important to note that themarginal ρ
depends on the given cost function.
Finally we devote Sections 4 to 6 to the proof ofheorem 1.3. he construction is

universal, in the following sense: given ρ ∈ P(Rd) such that (1.4) holds, we exhibit a
symmetric transport plan P that has support outside the region

Dα = {(x1 , . . . , xN) ∈ (Rd)N
∣ ∃i ≠ j with ∣x i − x j ∣ < α}

for some α > 0. his implies that C(P) is ûnite for any repulsive cost function.

2 Notation and Preliminary Results

In the following, x and x j denote elements ofRd , and X = (x1 , . . . , xN) is an element
of (Rd)N = RNd. We also denote by B(x j , r) a ball with center x j ∈ Rd and radius
r > 0. Where it is not speciûed, the integrals are extended to all the space; if τ is a
measure over Rd, we denote by ∣τ∣ its total mass, i.e.,

∣τ∣ = ∫
Rd
dτ.

We use the expression N-transport plan for themarginal ρ to denote a probability
measure P ∈ P(RNd) with all themarginals equal to ρ ∈ P(Rd).

If P ∈M(RNd) is any measure, we deûne

Psym =
1
N!

∑
s∈SN

ϕ
s
#P,

where SN is the premutation group over the elements {1, . . . ,N}, and ϕs ∶RNd → RNd

is the function ϕs(x1 , . . . , xN) = (xs(1) , . . . , xs(N)). Note that Psym is a symmetric
measure; moreover, if P is a probabilitymeasure, then Psym is also a probabilitymea-
sure.
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Lemma 2.1 Let P ∈M(RNd). hen Psym has marginals equal to

1
N

N

∑
j=1

π
j
#P.

Proof Since Psym is symmetric,me can calculate its ûrst marginal:

π
1
#Psym = π

1
#(

1
N!

∑
s∈SN

ϕ
s
#P) =

1
N!

∑
s∈SN

π
1
#(ϕ

s
#P)

=
1
N!

∑
s∈SN

π
s(1)
# P =

1
N

N

∑
j=1

π
j
#P,

where the last equality is due to the fact that for every j = 1, . . . ,N , there are exactly
(N − 1)! permutations s ∈ SN such that s(1) = j. ∎

For a symmetric probability P ∈ P(RNd) we will use the shortened notation π(P)

to denote its marginals π
j
#P, which are all equal.

If σ1 , . . . , σN ∈ M(Rd), we deûne σ1 ⊗ ⋅ ⋅ ⋅ ⊗ σN ∈ M(RNd) as the usual product
measure. In similar fashion, if Q ∈M(R(N−1)d), σ ∈M(Rd) and 1 ≤ j ≤ N , we deûne
themeasure Q ⊗ j σ ∈M(RNd) as

(2.1) ∫
RNd

f d(Q ⊗ j σ) = ∫
RNd

f (x1 , . . . , xN)dσ(x j)dQ(x1 , . . . , x̂ j , . . . , xN)

for every f ∈ Cb(RNd).

2.1 Partitions of Non-atomic Measures

Let σ ∈ M(Rd) be a ûnite non-atomic measure and let b1 , . . . , bk be real positive
numbers such that b1 + ⋅ ⋅ ⋅ + bk = ∣σ ∣. Wemay want to write

Rd =
k
⋃
j=1
E j ,

where the E j ’s are disjoint measurable sets with σ(E j) = b j . his is trivial if d = 1,
since the cumulative distribution function ϕσ(t) = σ((−∞, t)) is continuous, and
one can ûnd the E j ’s as intervals. However, in higher dimension, themeasure σ might
concentrateover (d−1)-dimensional surfaces,whichmakes theproblem slightlymore
diõcult. herefore, we present the following proposition.

Proposition 2.2 Let σ ∈M(Rd) be a ûnite non-atomicmeasure. hen there exists a

direction y ∈ Rd ∖ {0} such that σ(H) = 0 for all the aõne hyperplanes H such that

H ⊥ y.

In order to prove Proposition 2.2, it is useful to present the following lemma.

Lemma 2.3 Let (X , µ) be ameasure space with µ(X) <∞, and {E i}i∈I a collection

ofmeasurable sets, such that

(i) µ(E i) > 0 for every i ∈ I;

(ii) µ(E i ∩ E j) = 0 for every i ≠ j.
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hen I is countable.

Proof Let i1 , . . . , in be a ûnite set of indices. hen using themonotonicity of µ and
the fact that µ(E i ∩ E j) = 0 if i ≠ j,

µ(X) ≥ µ(
n
⋃
k=1
E ik) =

n

∑
k=1

µ(E ik).

Hence we have that

sup{∑
j∈J

µ(E j) ∣ J ⊂ I, J ûnite} ≤ µ(X) <∞.

Since all the µ(E i) are strictly positive numbers, this is possible only if I is count-
able. ∎

Now we present the proof of Proposition 2.2.

Proof For k = 0, 1, . . . , d − 1, we recall the deûnitions of the Grassmannian

Gr(k,Rd) = {v linear subspace of Rd ∣ dim v = k}

and the aõne Grassmannian

Graò(k,Rd) = {w aõne subspace of Rd ∣ dimw = k} .

Given w ∈ Graò(k,Rd), we denote by [w] the unique element of Gr(k,Rd) par-
allel to w. If S ⊆ Graò(k,Rd), we say that S is full if for every v ∈ Gr(k,Rd), there
exists w ∈ S such that [w] = v. For every k = 1, 2, . . . , d − 1, let Sk ⊆ Graò(k,Rd) be
the set

S
k
= {w ∈ Graò(k,Rd) ∣ σ(w) > 0} .

he goal is to prove that Sd−1 is not full, while by hypothesis we know that S0 = ∅,
since σ is non-atomic.

he following key lemma leads to the proof in a ûnite number of steps.

Lemma 2.4 Let 1 ≤ k ≤ d − 1. If Sk−1 is not full, then Sk is not full.

Proof Let v ∈ Gr(k − 1,Rd), such that for every v′ ∈ Graò(k − 1,Rd) with [v′] = v,
it holds σ(v′) = 0. Consider the collection Wv = {w ∈ Graò(k,Rd) ∣ v ⊆ [w]}. If
w ,w′ ∈Wv are distinct, then w ∩w′ ⊆ v′ for some v′ ∈ Graò(k − 1,Rd) with [v′] = v,
thus σ(w ∩ w′) = 0. Since the measure σ is ûnite, because of Lemma 2.3, at most
countablymany elementsw ∈Wv can have positivemeasure, which implies that Sk is
not full. ∎

his concludes the proof of Proposition 2.2. ∎

Corollary 2.5 Given b1 , . . . , bk real positive numbers with b1 + ⋅ ⋅ ⋅ + bk = ∣σ ∣, there

exist measurable sets E1 , . . . , Ek ⊆ Rd such that the following hold:

(i) he E j ’s form a partition of Rd , i.e.,

Rd =
k
⋃
j=1
E j , E i ∩ E j = ∅ if i ≠ j;
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(ii) σ(E j) = b j for every j = 1, . . . , k.

Proof Let y ∈ Rd ∖{0} be given by Proposition 2.2, and observe that the cumulative
distribution function

F(t) = σ ({x ∈ Rd ∣ x ⋅ y < t})

is continuous. Hence we ûnd E1 , . . . , Ek each of the form

E j = {x ∈ Rd ∣ t j < x ⋅ y ≤ t j+1}

for suitable −∞ = t1 < t2 < ⋅ ⋅ ⋅ < tk < tk+1 = +∞, such that σ(E j) = b j . ∎

Corollary 2.6 Given b1 , . . . , bk non-negative numbers with b1 + ⋅ ⋅ ⋅ + bk < ∣σ ∣, there

exists measurable sets E0 , E1 , . . . , Ek ⊆ Rd such that the following hold:

(i) he E j ’s form a partition of Rd , i.e.,

Rd =
k
⋃
j=0
E j , E i ∩ E j = ∅ if i ≠ j;

(ii) σ(E j) = b j for every j = 1, . . . , k;
(iii) the distance between E i and E j is strictly positive if i , j ≥ 1, i ≠ j.

Proof If k = 1, the results follows trivially by Corollary 2.5 applied to b1 , ∣σ ∣ − b1. If
k ≥ 2, deûne

є =
∣σ ∣ − b1 − ⋅ ⋅ ⋅ − bk

k − 1
> 0.

As before, letting y ∈ Rd∖{0} be given by Proposition 2.2 and considering the cor-
responding cumulative distribution function, we ûnd F1 , . . . , F2k−1 each of the form

F j = {x ∈ Rd ∣ t j < x ⋅ y ≤ t j+1}

for suitable −∞ = t1 < t2 < ⋅ ⋅ ⋅ < t2k−1 < t2k = +∞, such that

σ(F2 j−1) = b j ∀ j = 1, . . . , k,
σ(F2 j) = є ∀ j = 1, . . . , k − 1.

Finally, we deûne

E j = F2 j−1 ∀ j = 1, . . . , k,

E0 =
k−1
⋃
j=1
F2 j .

Properties (i) and (ii) are immediate to check, while the distance between E i and
E j , for i , j ≥ 1, i ≠ j, is uniformly bounded from below by

min{t2 j+1 − t2 j ∣ 1 ≤ j ≤ k − 1} > 0. ∎
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3 Condition (1.4) is Sharp

In this sectionweprove that condition (1.4) is the bestpossible; i.e., given any repulsive
cost function there exists ρ ∈ P(Rd) with µ(ρ) = 1/N such that C(ρ) =∞.
Fix ω as in Deûnition 1.1, and set

k = ∫
B(0,1)

ω′(∣y∣)

∣y∣
d−1 dy.

Note that k is a positive ûnite constant, depending only on ω and the dimension
d. In fact, integrating in spherical coordinates,

k = ∫

1

0

ω′(r)

rd−1 αd r
d−1 dr = αdω(1),

where αd is the d-dimensional volume of the unit ball B(0, 1) ⊆ Rd .
Now deûne a probability measure ρ ∈ P(Rd) as

(3.1) ∫
Rd
f dρ ∶=

1
N
f (0) +

N − 1
N

∫
B(0,1)

f (x)
ω′(∣x∣)

k ∣x∣
d−1 dx ∀ f ∈ Cb(Rd).

his measure has an atom ofmass 1/N in the origin, and is absolutely continuous
on Rd ∖ {0}. Hence the concentration of ρ is equal to 1/N , even if for every ball B
around the origin one has ρ(B) > 1/N .

We want to prove that any symmetric transport plan with marginals ρ has inûnite
cost. Let us consider, by contradiction, a symmetric plan P, with π(P) = ρ, such that

∫ ∑
1≤i< j≤N

1
ω(∣x i − x j ∣)

dP(X) <∞.

hen one would have the following geometric properties.

Lemma 3.1 (i) P({(x1 , . . . , xN) ∣ ∃i ≠ j, x i = x j}) = 0;
(ii) P is concentrated over the N coordinate hyperplanes {x j = 0}, j = 1, . . . ,N , i.e.,

supp(P) ⊆ E ∶=
N
⋃
j=1

{x j = 0} .

Proof (i) Since ω(0) = 0, recalling Deûnition 1.1, the cost function is identi-
cally equal to +∞ in the region {(x1 , . . . , xN) ∶ ∃i ≠ j, x i = x j}. herefore, since by
assumption the cost of P is ûnite, it must be

P({(x1 , . . . , xN) ∣ ∃i ≠ j, x i = x j}) = 0.

(ii) Deûne

p1 = P( {x1 = 0} )

p2 = P( {x1 = 0} ∩ {x2 = 0} )

⋮

pN = P((0, . . . , 0)) .
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Note that p1 = P({x1 = 0}) = π(P)({0}) = ρ({0}) = 1/N . We claim that p2 =

⋅ ⋅ ⋅ = pN = 0. It suõces to prove that p2 = 0, since by monotonicity of themeasure P,
we have p j ≥ p j+1. Since P has ûnite cost,

∫
RNd

dP
ω(∣x1 − x2∣)

must be ûnite. However,

∫
RNd

dP
ω(∣x1 − x2∣)

≥ ∫
{x1=0}∩{x2=0}

dP
ω(∣x1 − x2∣)

= p2 ∫
R2d

δ0(x1)δ0(x2)

ω(∣x1 − x2∣)
dx1 dx2 ,

and hence p2 must be zero.
By inclusion-exclusion, we have

P(E) =
N

∑
j=1

(−1) j+1
(
N

j
)p j = Np1 = 1,

and hence P is concentrated over E.
∎

In view of Lemma 3.1, letting H j = {x j = 0} for j = 1, . . . ,N ,

P =
N

∑
j=1

P∣H j .

For every j = 1, . . . ,N , there exists a unique measure Q j over R(N−1)d such that,
recalling equation (2.1), P∣H j = Q j⊗ jδ0,withQ j(R(N−1)d) = 1

N . Since P is symmetric,
considering a permutation s ∈ SN with s( j) = j, it follows that Q j is symmetric; then,
considering any permutation in SN , we see that there exists a symmetric probability
Q over R(N−1)d such that Q j =

1
N Q for every j = 1, . . . ,N , i.e.,

P =
1
N

N

∑
j=1

Q ⊗ j δ0 .

Projecting P to its one-particlemarginal and using the deûnition of ρ in (3.1), we
get that π(Q) is absolutely continuous with respect to the Lebesguemeasure, with

dπ(Q)

dLd
=
χB(0,1)(x)ω

′(x)

k ∣x∣
d−1 .

Here we get the contradiction, because

∫ c(X)dP(X) ≥
1
N
∫

1
ω(∣x1 − x2∣)

δ0(x1)dx1 dQ(x2 , . . . , xN)

=
1
N
∫

1
ω(∣x2∣)

dQ(x2 , . . . , xN) =
1
N
∫
Rd

1
ω(∣x∣)

dπ(Q)(x)

=
1
N
∫
B(0,1)

ω′(∣x∣)

ω(∣x∣)

1

k ∣x∣
d−1 dx =

1
N

αd

k
∫

1

0

ω′(r)

ω(r)
dr = +∞.
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4 Non-atomic Marginals

his short section dealswith the casewhere ρ isnon atomic, i.e., µ(ρ) = 0. In this case,
the transport plan is given by an optimal transport map inMonge’s fashion,whichwe
proceed to construct.

Using Corollary 2.5, let E1 , . . . , E2N be a partition of Rd such that

ρ(E j) =
1

2N
∀ j = 1, . . . , 2N .

Next we take a measurable function ϕ∶Rd → Rd , preserving the measure ρ and
deûned locally such that

ϕ(E j) = E j+2 ∀ j = 1, . . . ,N − 2,
ϕ(E2N−1) = E1 ,
ϕ(E2N) = E2 .

he behaviour of ϕ on the hyperplanes that separate the E j ’s is arbitrary, since they
form a ρ-null set. Note that ∣x − ϕ(x)∣ is uniformly bounded from below by some
constant γ > 0, as is clear by the construction of the E j ’s (see the proof of Corollary
2.5). A transport plan P of ûnite cost is now deûned for every f ∈ Cb(RNd) by

∫
RNd

f dP = ∫
RNd

f (x , ϕ(x), . . . , ϕN−1
(x)) dρ(x),

since

∫
RNd

c dP = (
N

2
)∫

Rd
1

ω(∣x − ϕ(x)∣)
dρ(x) ≤ (

N

2
)

1
ω(γ)

.

5 Marginals with a Finite Number of Atoms

his section constitutes the core of the proof, aswe dealwithmeasures of general form
with an arbitrary (but ûnite) number of atoms. hroughout this and the next section,
we assume that themarginal ρ fulûlls condition (1.4).

5.1 The Number of Atoms is Less than or Equal to N

Note that, if the number of atoms is at most N , then ρ must have a non-atomic part
σ , due to the condition (1.4). From here on we consider

ρ = σ +
k

∑
i=1
b iδx i ,

where b1 ≥ b2 ≥ ⋅ ⋅ ⋅ ≥ bk > 0.
We begin with the following deûnition.

Deûnition 5.1 A partition of σ of level k ≤ N subordinate to (x1 , . . . , xk ; b1 , . . . , bk)

is

σ = τ +
k

∑
i=1

N

∑
h=i+1

σ
i
h ,

where the follwing hold:
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(i) τ, σ i
h are non-atomicmeasures;

(ii) for every i and every h ≠ k, the distance between supp σ i
h and supp σ i

k is strictly
positive;

(iii) for every i , h, if j ≤ i, then x j has a strictly positive distance from supp σ i
h ;

(iv) for every i , h, ∣σ i
h ∣ = b i , and ∣τ∣ > 0.

Note that such a partition can only exist if

(5.1) ∣σ ∣ >
k

∑
i=1

(N − i)b i .

On the otherhand, the following lemmaproves that condition (5.1) is also suõcient
to get a partition of σ .

Lemma 5.2 Let (b1 , . . . , bk) with k ≤ N , and

∣σ ∣ >
k

∑
i=1

(N − i)b i .

hen there exists a partition of σ subordinate to (x1 , . . . , xk ; b1 , . . . , bk).

Proof Fix (x1 , . . . , xk) and for every ε > 0, deûne

Aε =
k
⋃
j=1
B(x j , ε) and σε = σ χAε .

hen take ε small enough such that

∣σ − σε ∣ >
k

∑
i=1

(N − i)b i ,

which is possibile because µ(σ) = 0 (σ has concentration zero), and hence ∣σε ∣ → 0
as ε → 0. Due to Corollary 2.6, the set Rd ∖ Aε can be partitioned as

Rd ∖ Aε = (
k
⋃
i=1

N
⋃

h=i+1
E

i
h) ∪ E ,

with σ(E i
h) = b i , and dist(E i

h , E
i
k) is uniformly bounded from below.

Finally, deûne σ i
h = σ χE i

h
, τ = σε + σ χE . ∎

Proposition 5.3 Suppose that k ≤ N and (b1 , . . . , bk) are such that

(5.2) ∣σ ∣ > Nb1 −
k

∑
j=1
b j .

hen there exists a transport plan of ûnite cost with marginals

σ +
k

∑
j=1
b jδx j .
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Proof In order to simplify the notation, set bk+1 = 0. First of all we shall ûx a par-
tition of σ subordinate to (x1 , . . . , xk ; b1 − b2 , . . . , bk−1 − bk , bk). To do this we apply
Lemma 5.1, since

k−1

∑
i=1

(N − i)(b i − b i+1) + (N − k)bk = (N − 1)b1 −
k

∑
i=2
b i < ∣σ ∣ .

Next we deûne themeasures λ i = δx1 ⊗ ⋅ ⋅ ⋅ ⊗ δx i ⊗ σ i
i+1 ⊗ ⋅ ⋅ ⋅ ⊗ σ i

N ∈M(RNd). Let
us calculate themarginals of λ i . Since ∣σ i

h ∣ = b i − b i+1 for all h = i + 1, . . . ,N , we get

π
j
#λ i =

⎧⎪⎪
⎨
⎪⎪⎩

(b i − b i+1)
N−iδx j if 0 ≤ j ≤ i ,

(b i − b i+1)
N−i−1σ i

j if i + 1 ≤ j ≤ N .

Let us deûne, for i = 1, . . . , k, themeasure

Pi =
N

(b i − b i+1)N−i−1 (λ i)sym ,

where Pi = 0 if b i = b i+1. By Lemma 2.1, themarginals of Pi are equal to

π(Pi) =
1

(b i − b i+1)N−i−1

N

∑
j=0

π
j
#λ i =

i

∑
j=1

(b i − b i+1)δx j +
N

∑
h=i+1

σ
i
h ,

so that
k

∑
i=1

π(Pi) =
k

∑
j=1
b jδx j +

k

∑
i=1

N

∑
h=i+1

σ
i
h .

It suõces now to take any symmetric transport plan Pτ of ûnite costwithmarginals
τ, given by the result of Section 4, and ûnally set

P = Pτ +
k

∑
i=1

Pi .
∎

As a corollary we obtain the following theorem.

heorem 5.4 If ρ has k ≤ N atoms, then there exists a transport plan of ûnite cost.

Proof Let

ρ = σ +
k

∑
j=1
b jδx j .

Note that, since b1 < 1/N ,

∣σ ∣ = 1 −
k

∑
j=1
b j > Nb1 −

k

∑
j=1
b j ,

hence we can apply Proposition 5.3 to conclude the proof. ∎
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5.2 The Number of Atoms is Greater than N

Here we deal with the much more diõcult situation in which ρ has N + 1 or more
atoms, i.e.,

ρ = σ +
k

∑
j=1
b jδx j

with k ≥ N + 1 and as before b1 ≥ b2 ≥ ⋅ ⋅ ⋅ ≥ bk > 0. Note that in this case it might
happen that σ = 0.

hemain point is to use a double induction on the dimensionN and the number of
atoms k, aswill be clear in Proposition 5.6. he following lemma is a simple numerical
trick needed for the inductive step in Proposition 5.6.

Lemma 5.5 Let (b1 , . . . , bk) with k ≥ N + 2 and

(5.3) (N − 1)b1 ≤
k

∑
j=2
b j .

hen there exist t2 , . . . , tk such that

(i) t2 + ⋅ ⋅ ⋅ + tk = (N − 1)b1;
(ii) for every j = 2, . . . , k, 0 ≤ t j ≤ b j , andmoreover,

t2 ≥ ⋅ ⋅ ⋅ ≥ tk ,
b2 − t2 ≥ b3 − t3 ≥ ⋅ ⋅ ⋅ ≥ bk − tk ;

(iii) (N − 2)t2 ≤ ∑k
j=3 t j ;

(iv) (N − 1)(b2 − t2) ≤ ∑
k
j=3(b j − t j).

Proof For j = 2, . . . , k deûne

p j =
k

∑
h= j
b j ,

and let ȷ̄ be the least j ≥ 2 such that (N − j + 2)b j ≤ p j ; note that j = N + 2 works,
hence ȷ̄ ≤ N + 2. Deûne

t j = b j −
p2 − (N − 1)b1

N
for j = 2, . . . , ȷ̄ − 1,

t j = b j −
b j

p ȷ̄

p2 − (N − 1)b1
N

(N − ȷ̄ + 2) for j = ȷ̄, . . . , k.

Next we prove that this choice fulûlls conditions (i)–(iv).

Proof of (i)
k

∑
j=2

t j = p2 −
p2 − (N − 1)b1

N
( ȷ̄ − 2) −

p2 − (N − 1)b1
N

(N − ȷ̄ + 2)

= p2( 1 −
ȷ̄ − 2
N

−
N − ȷ̄ + 2

N
) + (N − 1)b1(

ȷ̄ − 2
N

+
N − ȷ̄ + 2

N
)

= (N − 1)b1 .
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Proof of (ii) In view of the fact that (N − 1)b1 ≤ p2 and ȷ̄ ≤ N + 2, it is clear that
t j ≤ b j . If j < ȷ̄, we have (N − j + 2)b j > p j , and hence

p2 = b2 + ⋅ ⋅ ⋅ + b j−1 + p j < ( j − 2)b1 + (N − j + 2)b j .

hus, since 2 ≤ j ≤ N + 1,

t j =
Nb j − p2 + (N − 1)b1

N
>

Nb j − (N − j + 2)b j − ( j − 2)b1 + (N − 1)b1
N

=
( j − 2)b j + (N − j + 1)b1

N
≥ 0.

To show that t j ≥ 0 for j ≥ ȷ̄, we must prove that [p2 − (N − 1)b1](N − ȷ̄ + 2) ≤

Np ȷ̄, which is trivial if ȷ̄ = N − 2. Otherwise, it is equivalent to

−( ȷ̄ − 2)[p2 − (N − 1)b1] + N[b2 + ⋅ ⋅ ⋅ + b ȷ̄−1 − (N − 1)b1] ≤ 0.

Since 2 ≤ ȷ̄ ≤ N + 1, the ûrst term is negative and b2 + ⋅ ⋅ ⋅ + b ȷ̄−1 − (N − 1)b1 ≤

−(N − ȷ̄ + 1)b1 ≤ 0.
Using the fact that b2 ≥ ⋅ ⋅ ⋅ ≥ bk , it is easy to see that t2 ≥ ⋅ ⋅ ⋅ ≥ t ȷ̄−1 and t ȷ̄ ≥ ⋅ ⋅ ⋅ ≥ tk ;

note that for j ≥ ȷ̄ we have t j = αb j , for some 0 ≤ α ≤ 1. As for the remaining
inequality,

t ȷ̄−1 ≥ t ȷ̄ ⇐⇒ b ȷ̄−1 − b ȷ̄ ≥
p2 − (N − 1)b1

Np ȷ̄
[p ȷ̄ − (N − ȷ̄ + 2)b ȷ̄],

we already proved that
p2 − (N − 1)b1

Np ȷ̄
≤

1
N − ȷ̄ + 2

;

moreover, by deûnition of ȷ̄, we have (N − ȷ̄ + 3)b ȷ̄−1 > p ȷ̄−1, or equivalently
(N − ȷ̄ + 2)b ȷ̄−1 > p ȷ̄. hus,

p2 − (N − 1)b1
Np ȷ̄

[p ȷ̄ − (N − ȷ̄ + 2)b ȷ̄] ≤
p ȷ̄

N − ȷ̄ + 2
− b ȷ̄ < b ȷ̄−1 − b ȷ̄ ,

as wanted.
It is le� to show that b2 − t2 ≥ ⋅ ⋅ ⋅ ≥ bk − tk . It is trivial to check that b2 − t2 = ⋅ ⋅ ⋅ =

b ȷ̄−1 − t ȷ̄−1, and b ȷ̄ − t ȷ̄ ≥ ⋅ ⋅ ⋅ ≥ bk − tk using b ȷ̄ ≥ ⋅ ⋅ ⋅ ≥ bk as before. Finally,

b ȷ̄−1 − t ȷ̄−1 ≥ b ȷ̄ − t ȷ̄ ⇐⇒
p2 − (N − 1)b1

N
≥
b ȷ̄

p ȷ̄

p2 − (N − 1)b1
N

(N − ȷ̄ + 2),

which is true, since (N − ȷ̄ + 2)b ȷ̄ ≤ p ȷ̄ and p2 − (N − 1)b1 ≥ 0.

Proof of (iii) he thesis is equivalent to

(N − 1)t2 ≤
k

∑
j=2

t j ⇐⇒ (N − 1)t2 ≤ (N − 1)b1 ,

and this is implied by t2 ≤ b2 ≤ b1.

Proof of (iv) he thesis is equivalent to

N(b2 − t2) ≤ p2 − (N − 1)b1 ,

which is in fact an equality (see the deûnition of t2). ∎
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We are ready to present themain result of this section, which provides a transport
plan of ûnite cost under an additional hypothesis on the tuple (b1 , . . . , bk). he result
is peculiar because it does not involve the non-atomic part of themeasure; it is in fact
a general discrete construction to get a purely atomic symmetricmeasure having ûxed
purely atomicmarginals.

Proposition 5.6 Let k > N and (b1 , . . . , bk) with

(5.4) (N − 1)b1 ≤ b2 + ⋅ + bk .

hen for every x1 , . . . , xk ∈ Rd distinct, there exists a symmetric transport plan of

ûnite cost with marginals ρ = b1δx1 + ⋅ ⋅ ⋅ + bkδxk .

Proof For every pair of positive integers (N , k), with k > N , let P(N , k) be the
following proposition.

Let (x1 , . . . , xk ; b1 , . . . , bk) with (N − 1)b1 ≤ b2 + ⋅ ⋅ ⋅ + bk . hen for every
(x1 , . . . , xk) there exists a symmetricN-transportplanof ûnite costwithmarginals
b1δx1 + ⋅ ⋅ ⋅ + bkδxk .

We will prove P(N , k) by double induction, in the following way. First we prove
P(1, k) for every k andP(N ,N + 1) for every N . hen we prove

P(N − 1, k) ∧P(N , k − 1) Ô⇒ P(N , k).

Proof ofP(1, k) his is trivial: simply take b1δx1 + ⋅ ⋅ ⋅ + bkδxk as a “transport plan”.

Proof ofP(N ,N + 1) Let us denote by AN the (N + 1) × (N + 1) matrix

AN =

⎛
⎜
⎜
⎜
⎝

0 1 ⋅ ⋅ ⋅ 1
1 0 ⋅ ⋅ ⋅ 1
⋮ ⋮ ⋱ ⋮

1 ⋅ ⋅ ⋅ 1 0

⎞
⎟
⎟
⎟
⎠

,

whose inverse is

A
−1
N =

1
N

⎛
⎜
⎜
⎜
⎝

−(N − 1) 1 ⋅ ⋅ ⋅ 1
1 −(N − 1) ⋅ ⋅ ⋅ 1
⋮ ⋮ ⋱ ⋮

1 ⋅ ⋅ ⋅ 1 −(N − 1)

⎞
⎟
⎟
⎟
⎠

.

Also deûne the following (N + 1) × N matrix, with elements in Rd :

(x i j) =

⎛
⎜
⎜
⎜
⎝

x2 x3 ⋅ ⋅ ⋅ xN+1
x1 x3 ⋅ ⋅ ⋅ xN+1
⋮ ⋮ ⋱ ⋮

x1 x2 ⋅ ⋅ ⋅ xN

⎞
⎟
⎟
⎟
⎠

,

where the i-th row is (x1 , . . . , x i−1 , x i+1 , . . . , xN+1). We want to construct a transport
plan of the form

P = N

N+1

∑
i=1
a i(δx i1 ⊗ ⋅ ⋅ ⋅ ⊗ δx iN )sym ,
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where a i ≥ 0. Note that, by Lemma 2.1, themarginals of P are equal to

π(P) =
N+1

∑
j=1

(
N+1

∑
i=1
i≠ j

a i)δx j .

hus, the condition on the a i ’s to have π(P) = ρ is

AN

⎛
⎜
⎝

a1
⋮

aN+1

⎞
⎟
⎠
=
⎛
⎜
⎝

b1
⋮

bN+1

⎞
⎟
⎠
,

i.e.,
⎛
⎜
⎝

a1
⋮

aN+1

⎞
⎟
⎠
= A

−1
N

⎛
⎜
⎝

b1
⋮

bN+1

⎞
⎟
⎠
.

Finally, observe that condition (5.3) implies that a1 ≥ 0, while the fact that b1 ≥
b2 ≥ ⋅ ⋅ ⋅ ≥ bN+1 leads to a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ aN+1, and hence a i ≥ 0 for every i, and we are
done.

Inductive step Let (b1 , . . . , bk) satisfy (5.3), with k ≥ N +2 (otherwisewe are in the
case P(N ,N + 1), which we have already proved). Take t2 , . . . , tk given by Lemma
5.5, and apply the inductive hypotheses to ûnd the following:
● a symmetric transport plan Q1 of ûnite cost in (N − 1) variables, with marginals

π(Q1) =
k

∑
j=2

t jδx j ;

● a symmetric transport plan R of ûnite cost in N variables, with marginals

π(R) =
k

∑
j=2

(b j − t j)δx j .

Deûne

Q =
1

N − 1

N

∑
j=1

(Q1 ⊗ j δx1).

Since Q1 is symmetric, Q is symmetric. Moreover, using Lemma 5.5(i),

π(Q) =
1

N − 1
δx1

k

∑
j=2

t j +
k

∑
j=2

t jδx j = b1δx1 +
k

∑
j=2

t jδx j .

he transport plan P = Q + R is symmetric, with marginals π(P) = b1δx1 + ⋅ ⋅ ⋅ +

bkδxk . ∎

In order to conclude the proof of this section, we must now deal not only with
the non-atomic part of ρ, but also with the additional hypothesis of Proposition 5.6.
Indeed, the presence of a non-atomic part will ûx the atomicmass exceeding the in-
equality (5.4), as will be seen soon.

Deûnition 5.7 Given N , we say that the tuple (b1 , . . . , bℓ) is fast decreasing if

(N − j)b j >∑
i> j
b i ∀ j = 1, . . . , ℓ − 1.
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Remark 5.8 Note that if (b1 , . . . , bℓ) is fast decreasing, then necessarily ℓ < N . As a
consequence, given any sequence (b1 , b2 , . . . ), even inûnite,we can select itsmaximal
fast decreasing initial tuple (b1 , . . . , bℓ) (which might be empty, i.e., ℓ = 0).

heorem 5.9 If ρ is such that

ρ = σ +
k

∑
j=1
b jδx j

with k > N atoms, then there exists a transport plan of ûnite cost.

Proof Consider (b1 , . . . , bk) and use Remark 5.8 to select its maximal fast decreas-
ing initial tuple (b1 , . . . , bℓ), ℓ < N . hanks to Proposition 5.6, we can construct a
transport plan Pℓ+1 over R(N−ℓ)d with marginals bℓ+1δxℓ+1 + ⋅ ⋅ ⋅ + bkδxk , since

(N − ℓ − 1)bℓ+1 ≤
k

∑
j=ℓ+2

b j

by maximality of (b1 , . . . , bℓ), and this is condition (5.3) in this case. We extend Pℓ+1
step by step to an N-transport plan, letting

Pj =
1

N − j

N

∑
i= j

(Pj+1 ⊗i δx j),

for j = ℓ, ℓ − 1, . . . , 1.
Let pℓ = bℓ+1 + ⋅ ⋅ ⋅ + bk , and qℓ =

pℓ
N−ℓ . We claim that ∣Pj ∣ = (N − j + 1)qℓ . In fact,

by construction ∣Pℓ+1∣ = pℓ , and inductively

∣Pj ∣ =
1

N − j

N

∑
i= j−1

∣Pj+1∣ =
N − j + 1
N − j

(N − j)qℓ = (N − j + 1)qℓ .

Moreover,

π(Pj) =
k

∑
i= j

qℓδx i +
k

∑
i=ℓ+1

b iδx i .

his is true by construction in the case j = ℓ + 1, and inductively

π(Pj) =
1

N − j
δx j ∣Pj+1∣ +

N − j

N − j
π(Pj+1) =

ℓ

∑
i= j

qℓδx i +
k

∑
i=ℓ+1

b iδx i .

Note that, for every i = 1, . . . , ℓ, b i ≥ bℓ > qℓ . We shall ûnd, using Proposition 5.3,
a transport plan of ûnite cost with marginals

σ +
ℓ

∑
i=1

(b i − qℓ)δx i ,

since condition (5.2) reads

N(b1 − qℓ) −
ℓ

∑
i=1

(b i − qℓ) = Nb1 −
ℓ

∑
i=1
b i − (N − ℓ)qℓ < 1 −

k

∑
i=1
b i = ∣σ ∣ . ∎
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6 Marginals with Countably Many Atoms

In this section, we ûnally deal with the case of an inûnite number of atoms, i.e.,

ρ = σ +
∞

∑
j=1
b jδx j

with b j > 0, b j+1 ≤ b j for every j ≥ 1.
hemain issue is topological in nature: if the atoms x j are too close each other (for

example, if they form a dense subset ofRd ) and the growth of b j for j →∞ is too slow,
the cost might diverge. With this in mind, we begin with an elementary topological
result in order to separate the atoms into N groups, with controlledminimal distance
from each other.

Lemma 6.1 here exists a partitionRd = E2⊔⋅ ⋅ ⋅⊔EN+1 such that the following hold:

(i) for every j = 2, . . . ,N + 1, x j ∈ E̊ j ;

(ii) for every j = 2, . . . ,N + 1, ∂E j does not contain any x i .

Proof For j = 3, . . . ,N + 1, let r j > 0 small enough such that

x i ∉ B(x j , r j) for every i = 1, . . . ,N , i ≠ j.

Fixing any j = 3, . . . ,N + 1, by a cardinality argument, there must be a positive
real t j with 0 < t j < r j and ∂B(x j , t j) not containing any x i , i ≥ 1. We take E j =

B(x j , t j) for j = 3, . . . ,N + 1. Note that this choice fulûlls conditions (i) and (ii) for
j = 3, . . . ,N + 1. Finally, we take

E2 = Rd ∖ (
N+1
⋃
j=3
E j) .

Clearly x2 ∈ E̊2, andmoreover the condition (ii) is satisûed, since

∂E2 =
N+1
⋃
j=3

∂E j .
∎

Consider the partition given by Lemma 6.1, and deûne the corresponding partition
of N given by N = A2 ∪ ⋅ ⋅ ⋅ ∪ AN+1, where

A j = {i ∈ N ∣ x i ∈ E j} .

Next we consider, for every j = 2, . . . ,N + 1, a threshold n j ≥ 2 large enough such
that, deûning

є j = ∑
i≥n j
i∈A j

b i ,

then

(6.1) є2 + ⋅ ⋅ ⋅ + єN+1 < min{bN+1 ,
1
N
− b1} .

his canbe done, since the series∑ b i converges, andhence for every j = 2, . . . ,N + 1,
the series∑i∈A j

b i is convergent.
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For every j = 2, . . . ,N + 1 deûne the transport plan

Pj = N[( ∑
i∈A j , i≥n j

b iδx i) ⊗ δx2 ⊗ ⋅ ⋅ ⋅ ⊗ δ̂x j ⊗ ⋅ ⋅ ⋅ ⊗ δxN+1]
sym

,

and note that, by Lemma 2.1,

π(Pj) = є j

N+1

∑
h=2
h≠ j

δxh + ∑
i≥n j
i∈A j

b iδx i .

hen let P∞ = ∑
N+1
j=2 Pj , and observe that

π(P∞) =
N+1

∑
j=2

(
N+1

∑
i=2
i≠ j

є i)δx j +
N+1

∑
j=2
∑
i≥n j
i∈A j

b iδx i .

Now let

b̃ i =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

b i −∑
N+1
h=2
h≠i

єh if 2 ≤ i ≤ N + 1,

0 if i ≥ n j and i ∈ A j for some j = 2, . . . ,N + 1,
b i otherwise.

We are le� to ûnd a transport plan of ûnite cost with marginals

σ +
∞

∑
i=1
b̃ iδx i ,

which has indeed a ûnite number of atoms. Note that b̃ i ≥ 0 for every i, thanks to
condition (6.1). Moreover, since b̃1 = b1 and b̃ j ≤ b j , b̃1 ≥ b̃ j for every j ∈ N, as is used
in what follows. If

(N − 1)b̃1 ≤
∞

∑
i=2
b̃ i

we can conclude using Proposition 5.6. Otherwise, we proceed as in the proof of
heorem 5.9, with {b̃ j} replacing {b j}. At the ûnal stage, it is le� to check that

N(b̃1 − q̃k+1) −
k

∑
i=1

(b̃ i − q̃k+1) < 1 −
∞

∑
i=1
b i = ∣σ ∣ .

Indeed this is true, since using the condition (6.1) one gets

N(b̃1 − q̃k+1) −
k

∑
i=1

(b̃ i − q̃k+1) = Nb1 −
∞

∑
i=1
b i + N(є2 + ⋅ ⋅ ⋅ + єN+1) < 1 −

∞

∑
i=1
b i .
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