Berman has raised the question in his work of whether Hermite-Fejér interpolation based on the so-called “practical” Chebyshev points, , 0(1)n, is uniformly convergent for all continuous functions on the interval [−1, 1]. In spite of similar negative results by Berman and Szegö, this paper shows this result is true, which is in accord with the great similarities of Lagrangian interpolation based on these points versus the points , 1(1)n.