Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T02:35:43.805Z Has data issue: false hasContentIssue false

When do finite Blaschke products commute?

Published online by Cambridge University Press:  17 April 2009

Isabelle Chalendar
Affiliation:
Institut Girard Desargues, UFR de Mathématiques, Université Lyon 1, 69622 Villeurbanne Cedex, France, e-mail: [email protected]
Raymond Mortini
Affiliation:
Université de Metz, Département de Mathématiques, Ile de Saulcy, F-57045 Metz, France, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the following questions. Which finite Blaschke products are eigenvectors of the composition operators Tu: ffu, what are the possible eigenvalues, and which pairs (B, C) of finite Blaschke products commute (that is, satisfy BC = CB).

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Arteaga, C., ‘Commuting finite Blaschke products’, Ergodic. Theory Dynamical Systems 19 (1999), 549552.CrossRefGoogle Scholar
[2]Behan, D., ‘Commuting analytic functions without fixed points’, Proc. Amer. Math. Soc. 37 (1973), 114120.CrossRefGoogle Scholar
[3]Cassier, G. and Chalendar, I., ‘The group of the invariants of a finite Blaschke product’, Complex Variables Theory Appl. 42 (2000), 193206.Google Scholar
[4]Cowen, C.C., ‘Commuting analytic functions’, Trans. Amer. Math. Soc. 283 (1984), 685695.CrossRefGoogle Scholar
[5]Craighead, R. L. and Carroll, F.W., ‘A decomposition of finite Blaschke products’, Complex Variables Theory Appl. 26 (1995), 333341.Google Scholar
[6]Hamilton, D.H., ‘Absolutely continuous conjugacies of Blaschke products III’, J. Analyse Math. 63 (1994), 333348.CrossRefGoogle Scholar
[7]Hamilton, D.H., ‘Absolutely continuous conjugacies of Blaschke products II’, J. London Math. Soc. (2) 51 (1995), 279285.CrossRefGoogle Scholar
[8]Hamilton, D.H., ‘Absolutely continuous conjugacies of Blaschke products’, Adv. Math. 121 (1996), 120.CrossRefGoogle Scholar
[9]Johnson, A.S.A. and Rudolph, D.J., ‘Commuting endomorphisms of the circle’, Ergodic Theory Dynamical Systems 12 (1992), 743748.CrossRefGoogle Scholar
[10]Julia, G., ‘Mémoire sur la permutabilité des fractions rationnelles’, Ann. Sci. École Norm. Sup. 39 (1922), 131215.CrossRefGoogle Scholar
[11]Ritt, J.F., ‘Permutable rational functions’, Trans. Amer. Math. Soc. 25 (1923), 399448.CrossRefGoogle Scholar
[12]Schub, M. and Sullivan, D., ‘Expanding endomorphisms of the circle revisited’, Ergodic. Theory Dynamical Systems 5 (1985), 285289.CrossRefGoogle Scholar
[13]Shapiro, J.H., Composition operators and classical function theory, Universitext: Tracts in Mathematics (Springer Verlag, New York, 1993).CrossRefGoogle Scholar