Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T08:00:11.652Z Has data issue: false hasContentIssue false

Weight functions which admit Tchebycheff quadrature

Published online by Cambridge University Press:  17 April 2009

Franz Peherstorfer
Affiliation:
Johannes Kepler Universitat Linz, Institut für Mathematik, Alten berger Strasse 69, A-4045 Linz, Austria.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe a class of weight functions, which admit Tchebycheff quadrature.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

[1]Gautschi, Walter, “Advances in Chebyshev quadrature”, Numerical analysis, 100121 (Proc. Dundee Conf. Numerical Analysis, 1975. Lecture Notes in Mathematics, 506. Springer-Verlag, Berlin, Heidelberg, New York, 1976).CrossRefGoogle Scholar
[2]Геронимус, я.Л. [Geronimus, Ja.L.], “О нвадратурной формуле Чеоьшева”, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 11821207. English Transl: “Čebyšev's quadrature formula”, Math. USSR – Izv. 3 (1969), 1115–1138.Google ScholarPubMed
[3]Marden, Morris, Geometry of polynomials (Mathematical Surveys, 3. American Mathematical Society, Providence, Rhode Island, 1966).Google Scholar
[4]Peherstorfer, Franz, “Characterization of positive quadrature formulas”, SIAM J. Math. Anal. 12 (1981), 935942.CrossRefGoogle Scholar
[5]Ullman, J.L., “A class of weight functions that admit Tchebycheff quadrature”, Michigan Math. J. 13 (1966), 417423.CrossRefGoogle Scholar