Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T03:34:14.111Z Has data issue: false hasContentIssue false

Wandering domains in the dynamics of certain meromorphic functions

Published online by Cambridge University Press:  17 April 2009

Yuefei Wang
Affiliation:
Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that meromorphic solutions of certain first-order nonlinear differential equations do not have wandering domains.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Baker, I.N., ‘An entire function which has wandering domains’, J. Austral. Math. Soc. Ser. A 22 (1976), 173176.CrossRefGoogle Scholar
[2]Baker, I.N., ‘Wandering domains in the iteration of entire functions’, Proc. London Math. Soc. (3) 49 (1984), 563576.CrossRefGoogle Scholar
[3]Baker, I.N., ‘Some entire functions with multiply-connected wandering domains’, Ergodic Theory Dynamical Systems 5 (1985), 163169.CrossRefGoogle Scholar
[4]Baker, I.N., Iteration of entire functions: an introductory survey, Lectures on complex analysis (World Scientific, Singapore, London, 1987), pp. 117.Google Scholar
[5]Baker, I.N., Kotus, J. and , Y., ‘Iterates of meromorphic functions IV: Critically finite functions’, Results Math. 22 (1992), 651656.CrossRefGoogle Scholar
[6]Baker, I.N. and Singh, A., ‘Wandering domains in the iteration of compositions of entire functions’, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 149153.Google Scholar
[7]Bank, S. and Kaufman, R., ‘On meromorphic solutions of first-order differential equations’, Comment. Math. Helv. 51 (1976), 289299.CrossRefGoogle Scholar
[8]Beardon, A.F., Iteration of rational functions (Springer-Verlag, Berlin, Heidelberg, New York, 1991).CrossRefGoogle Scholar
[9]Bergweiler, W., ‘Newton's method and a class of meromorphic functions without wandering domains’, Ergodic Theory and Dynamical Systems 13 (1993), 231247.CrossRefGoogle Scholar
[10]Bergweiler, W., ‘Iteration of meromorphic functions’, Bull. Amer. Math. Soc. 29 (1993), 151188.CrossRefGoogle Scholar
[11]Bergweiler, W. and Eremenko, A., ‘On the singularities of the inverse to a meromorphic function of finite order’, Revista Mat. Iberoamericana 11 (1995), 355373.CrossRefGoogle Scholar
[12]Bergweiler, W., Haruta, M., Kriete, H., Meier, H.G. and Terglane, N., ‘On the limit functions of iterates in wandering domains’, Ann. Acad. Sci. Fenn. Ser. A I Math 18 (1993), 369375.Google Scholar
[13]Bergweiler, W. and Terglane, N., ‘Weakly repelling fixpoints and the connectivity of wandering domains’, Trans. Amer. Math. Soc. 348 (1996), 112.CrossRefGoogle Scholar
[14]Bergweiler, W. and Wang, Y., ‘On the dynamics of composte entire functions’, Ark. Mat. 36 (1998), 3139.CrossRefGoogle Scholar
[15]Carleson, L. and Gamelin, T., Complex dynamics (Springer-Verlag, Berlin, Heidelberg, New York, 1993).CrossRefGoogle Scholar
[16]Eremenko, A. and Lyubich, M., ‘Examples of entire functions with pathological dynamics’, J. London Math. Soc. 36 (1987), 454468.Google Scholar
[17]Eremenko, A. and Lyubich, M., ‘The dynamics of analytic transforms’, Leningrad Math. J. 36 (1990), 563634.Google Scholar
[18]Eremenko, A. and Lyubich, M., ‘Dynamical properties of some classes of entire functions’, Ann. Inst. Fourier 42 (1992), 9891020.CrossRefGoogle Scholar
[19]Fatou, P., ‘Sur les équations fonctionelles’, Bull. Soc. Math. France 47 (1919), 161271; 48 (1920), 33–94, 208–314.Google Scholar
[20]Fatou, P., ‘Sur I′itération des fonctions transcendantes entières’, Acta Math. 47 (1926), 337360.CrossRefGoogle Scholar
[21]Gol'dberg, A., ‘On sing-valued solutions of first-order differential equations’, (in Russian), Ukrain Mat. Zh. 8 (1956), 254261.Google Scholar
[22]Goldberg, L. and Keen, L., ‘A finiteness theorem for a dynamical class of entire functions’, Ergodic Theory and Dynamical Systems 6 (1986), 183192.CrossRefGoogle Scholar
[23]Julia, G., ‘Sur l′itération des fonctions rationelles’, J. Math. Pures Appl. 4 (1918), 47245.Google Scholar
[24]Milnor, J., Dynamics in one complex variable: introductory lectures (IMS Stony Brook, New York, 1990).Google Scholar
[25]Nevanlinna, R., Eindeutige analytische Funktionen (Springer-Verlag, Berlin, Heidelberg, New York, 1953).CrossRefGoogle Scholar
[26]Stallard, G.M., ‘A class of meromorphic functions with no wandering domains’, Ann. Acad. Sci. Fenn. Ser. AI. Math. 16 (1991), 211226.Google Scholar
[27]Steinmetz, N., Rational iteration (Walter de Gruyter, Berlin, 1993).CrossRefGoogle Scholar
[28]Sullivan, D., ‘Quasiconformal homeomorphisms and dynamics I: Solution of the Fatou-Julia problem on wandering domains’, Ann. Math. 122 (1985), 401418.CrossRefGoogle Scholar