Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T18:30:41.633Z Has data issue: false hasContentIssue false

Unattained boundary points of the numerical range of Hilbert space operators

Published online by Cambridge University Press:  17 April 2009

Srimati Majumdar
Affiliation:
Federal University of Technology, P.M.B. 1526, Owerri, MO State, Nigeria.
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD theses
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]de Barra, G., “The boundary of the numerical range”, Glasgow Math. J. 22 (1981), 6972.CrossRefGoogle Scholar
[2]Berberian, S.K., “Approximate proper vectors”, Proc. Amer. Math. Soc. 13 (1962), 111114.CrossRefGoogle Scholar
[3]Berberian, S.K. and Orland, G.H., “On the closure of the numerical range of an operator”, Proc. Amer. Math. Soc. 18 (1967), 499503.CrossRefGoogle Scholar
[4]Das, K.C., “Boundary of numerical range”, J. Math. Anal. Appl. 60 (1977), 779780.CrossRefGoogle Scholar
[5]Das, K.C. and Craven, B.D., “Linearity and weak convergence on the boundary of numerical range”, J. Austral. Math. Soc. Ser. A 35 (1983), 221226.CrossRefGoogle Scholar
[6]Embry, M.R., “The numerical range of an operator”, Pacific J. Math. 32 (1970), 647650.CrossRefGoogle Scholar
[7]Embry, M.R., “Classifying special operators by means of subsets associated with the numerical range”, Pacific J. Math. 38 (1971), 6165.CrossRefGoogle Scholar
[8]Embry, M.R., “Orthogonality and the numerical range”, J. Math. Soc. Japan 27 (1975), 405411.CrossRefGoogle Scholar
[9]Garske, Gerhard, “The boundary of the numerical range of an operator”, J. Math. Anal. Appl. 68 (1979), 605607.CrossRefGoogle Scholar
[10]Kyle, J., “Wδ(T) is convex”, Pacific J. Math. 72 (1977), 483485.CrossRefGoogle Scholar
[11]Lin, C.S., “Boundary of the numerical range of an operator”, Canad. Math. Bull. 17 (1975), 689692.CrossRefGoogle Scholar
[12]Stampfli, J.G., “Extreme points of the numerical range of a hyponormal operator”, Michigan Math. J. 13 (1966), 8789.CrossRefGoogle Scholar
[13]Stampfli, J.G., “The norm of a derivation”, Pacific J. Math. 33 (1970), 737747.CrossRefGoogle Scholar