Published online by Cambridge University Press: 02 November 2017
In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set