Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T05:05:15.227Z Has data issue: false hasContentIssue false

TWO-DIMENSIONAL SHRINKING TARGET PROBLEM IN BETA-DYNAMICAL SYSTEMS

Published online by Cambridge University Press:  02 November 2017

MUMTAZ HUSSAIN
Affiliation:
Department of Mathematics and Statistics, La Trobe University, PO Box 199, Bendigo 3552, Australia email [email protected]
WEILIANG WANG*
Affiliation:
School of Mathematics and Statistics, Huazhong University of Science and Technology, 430074 Wuhan, China email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we investigate the two-dimensional shrinking target problem in beta-dynamical systems. Let $\unicode[STIX]{x1D6FD}>1$ be a real number and define the $\unicode[STIX]{x1D6FD}$-transformation on $[0,1]$ by $T_{\unicode[STIX]{x1D6FD}}:x\rightarrow \unicode[STIX]{x1D6FD}x\;\text{mod}\;1$. Let $\unicode[STIX]{x1D6F9}_{i}$ ($i=1,2$) be two positive functions on $\mathbb{N}$ such that $\unicode[STIX]{x1D6F9}_{i}\rightarrow 0$ when $n\rightarrow \infty$. We determine the Lebesgue measure and Hausdorff dimension for the $\limsup$ set

$$\begin{eqnarray}W(T_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D6F9}_{1},\unicode[STIX]{x1D6F9}_{2})=\{(x,y)\in [0,1]^{2}:|T_{\unicode[STIX]{x1D6FD}}^{n}x-x_{0}|<\unicode[STIX]{x1D6F9}_{1}(n),|T_{\unicode[STIX]{x1D6FD}}^{n}y-y_{0}|<\unicode[STIX]{x1D6F9}_{2}(n)\text{ for infinitely many }n\in \mathbb{N}\}\end{eqnarray}$$
for any fixed $x_{0},y_{0}\in [0,1]$.

Type
Research Article
Copyright
© 2017 Australian Mathematical Publishing Association Inc. 

References

Bugeaud, Y. and Wang, B., ‘Distribution of full cylinders and the Diophantine properties of the orbits in 𝛽-expansions’, J. Fractal Geom. 1 (2014), 799827.Google Scholar
Chung, K., A Course in Probability Theory, 2nd edn, Probability and Mathematical Statistics, 21 (Academic Press, New York, 1974).Google Scholar
Coons, M., Hussain, M. and Wang, B., ‘A dichotomy law for the Diophantine properties in 𝛽-dynamical systems’, Mathematika 62(3) (2016), 884897.Google Scholar
Dodson, M. M., ‘A note on metric inhomogeneous Diophantine approximation’, J. Aust. Math. Soc. Ser. A 62(2) (1997), 175185.Google Scholar
Falconer, K., Fractal Geometry, Mathematical Foundations and Applications, 2nd edn (John Wiley, Hoboken, NJ, 2003).CrossRefGoogle Scholar
Fan, A. and Wang, B., ‘On the lengths of basic intervals in beta expansions’, Nonlinearity 25(5) (2012), 13291343.Google Scholar
Ge, Y. and , F., ‘A note on inhomogeneous Diophantine approximation in beta-dynamical system’, Bull. Aust. Math. Soc. 91 (2015), 3440.Google Scholar
Parry, W., ‘On the 𝛽-expansions of real numbers’, Acta Math. Acad. Sci. Hungar. 11 (1960), 401416.Google Scholar
Philipp, W., ‘Some metrical theorems in number theory’, Pacific J. Math. 20 (1967), 109127.Google Scholar
Rényi, A., ‘Representations for real numbers and their ergodic properties’, Acta Math. Acad. Sci. Hungar. 8 (1957), 477493.Google Scholar
Shen, L. and Wang, B., ‘Shrinking target problems for beta-dynamical system’, Sci. China Math. 56 (2013), 91104.Google Scholar
Wang, B., Wu, J. and Xu, J., ‘Mass transference principle for lim sup sets generated by rectangles’, Math. Proc. Cambridge Philos. Soc. 158 (2015), 419437.CrossRefGoogle Scholar