Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T02:57:30.132Z Has data issue: false hasContentIssue false

There are no n-point Fσ sets in Rm

Published online by Cambridge University Press:  17 April 2009

David L. Fearnley
Affiliation:
Department of Mathematics, Utah Valley State College, Orem, UT., United States of America, e-Mail: [email protected]
L. Fearnley
Affiliation:
Department of Mathematics, Brigham Young University, Provo, UT., United States of America, e-mail: [email protected]
J. W. Lamoreaux
Affiliation:
Department of Mathematics, Utah Valley State College, Orem, UT., United States of America, e-Mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that, for any positive integers n and m, if a set SRm intersects every m − 1 dimensional affine hyperplane in Rm in exactly n points, then S is not an Fσ set. This gives a natural extension to results of Khalid Bouhjar, Jan J. Dijkstra, and R. Daniel Mauldin, who have proven this result for the case when m = 2, and also Jan J. Dijkstra and Jan van Mill, who have shown this result for the case when n = m.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Bouhjar, K., Dijkstra, J.J. and Mauldin, R.D., ‘No n-point set is σ-compact’, Proc. Amer. Math. Soc. 129 (2001), 621622.CrossRefGoogle Scholar
[2]Dijkstra, J.J. and van Mill, J., ‘On sets that meet every hyperplane in n-space in at most n points’, Bull. London Math. Soc. 34 (2002), 361368.CrossRefGoogle Scholar
[3]Fearnley, D.L., Fearnley, L. and Lamoreaux, J.W., ‘Every three-point space is zero dimensional’, Proc. Amer. Math. Soc. 131 (2003), 22412245.CrossRefGoogle Scholar
[4]Fearnley, D.L., Fearnley, L. and Lamoreaux, J.W., ‘On the dimension of n-point sets’, Topology Appl. 129 (2003), 1518.CrossRefGoogle Scholar
[5]Kulesza, J., ‘A two point set must be zero dimensional’, Proc. Amer. Math. Soc. 116 (1992), 551553.CrossRefGoogle Scholar
[6]Mauldin, R.D., ‘Is there a Borel set M in R 2 which meets each straight line in exactly two points?’, in Open Problems in Topology (North-Holland, Amsterdam, 1990), pp. 619629.Google Scholar
[7]Mazurkiewicz, S., ‘O pewnej mnogsci plaskiej, ktora ma z kazda prosta dwa i tylkp dwa punkty wspolne’, (Polish), C. R. Varsovie 7 (1914), 382–384. French translation: Sur un ensemble plan qui a avec chaque droit deut at seulement points cummuns, Stefan Mazurkiewicz, in Traveaux de Topologie et ses Applications (PWN, Warsaw, 1969), pp. 4647.Google Scholar