Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T00:40:46.349Z Has data issue: false hasContentIssue false

The structure of reversing symmetry groups

Published online by Cambridge University Press:  17 April 2009

Michael Baake
Affiliation:
Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany, e-mail: [email protected], http://www.math.uni-bielefeld.de/baake
John A.G. Roberts
Affiliation:
School of Mathematics, University of New South Wales, Sydney, NSW 2052, Australia, e-mail: [email protected], http://www.maths.unsw.edu.au/~jagr
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present some of the group theoretic properties of reversing symmetry groups, and classify their structure in simple cases that occur frequently in several well-known groups of dynamical systems.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Baake, M. and Roberts, J.A.G., ‘Reversing symmetry group of GL(2,ℤ) and PGL(2, ℤ) matrices with connections to cat maps and trace maps’, J. Phys. A: Math. Gen. 30 (1997), 15491573.CrossRefGoogle Scholar
[2]Baake, M. and Roberts, J.A.G., ‘Symmetries and reversing symmetries of toral automorphisms’, Nonlinearity 14 (2001), R1-R24; math.DS/0006092.CrossRefGoogle Scholar
[3]Baake, M. and Roberts, J.A.G., ‘Symmetries and reversing symmetries of polynomial automorphisms of the plane’, Nonlinearity 18 (2005), 791816; math.DS/0501151.CrossRefGoogle Scholar
[4]Birkhoff, G.D., ‘The restricted problem of three bodies’, Rend. Circ. Mat. Palermo 39 (1915), 265334.CrossRefGoogle Scholar
[5]Cairns, G., Jessup, B. and Nicolau, M., ‘Topologically transitive homeomorphisms of quotients of tori’, J. Discrete Contin. Dynam. Systems 5 (1999), 291300.CrossRefGoogle Scholar
[6]Coxeter, H.S.M. and Moser, W.O.J., Generators and relations for discrete groups, (4th edition) (Springer, Berlin, 1980).CrossRefGoogle Scholar
[7]van den Essen, A., Polynomial automorphisms and the Jacobian conjecture (Birkhäuser, Basel, 2000).CrossRefGoogle Scholar
[8]Gómez, A. and Meiss, J.D., ‘Reversible polynomial automorphisms of the plane: the involutory case’, Phys. Lett. A 312 (2003), 4958; nlin.CD/0209055.CrossRefGoogle Scholar
[9]Gómez, A. and Meiss, J.D., ‘Reversors and symmetries for polynomial automorphisms of the complex plane’, Nonlinearity 17 (2004), 9751000; nlin.CD/0304035.CrossRefGoogle Scholar
[10]Goodson, G.R., ‘Inverse conjugacies and reversing symmetry groups’, Amer. Math. Monthly 106 (1999), 1926.CrossRefGoogle Scholar
[11]Goodson, G.R., ‘Ergodic dynamical systems conjugate to their composition squares’, Acta Math. Univ. Comenian (N.S.) 71 (2002), 201210.Google Scholar
[12]Hall, M., Group theory, (2nd edition reprint) (Chelsea, New York, 2002).Google Scholar
[13]Hasse, H., Vorlesungen über Zahlentheorie, (2nd edition) (Springer, Berlin, 1964).CrossRefGoogle Scholar
[14]Huppert, B., Endliche Gruppen I (Springer, Berlin, 1967).CrossRefGoogle Scholar
[15]Jogia, D. and Roberts, J.A.G., ‘Integrable maps: the reversing symmetry group’, (UNSW preprint 2006).Google Scholar
[16]Jogia, D., Roberts, J.A.G. and Vivaldi, F., ‘An algebraic geometric approach to integrable maps of the plane’, J. Phys. A: Math. Gen. 39 (2006), 11331149.CrossRefGoogle Scholar
[17]Lamb, J.S.W., ‘Reversing symmetries in dynamical systems’, J. Phys. A: Math. Gen. 25 (1992), 925937.CrossRefGoogle Scholar
[18]Lamb, J.S.W., Reversing symmetries in dynamical systems, (Ph.D. Thesis) (Amsterdam, 1994).CrossRefGoogle Scholar
[19]Lamb, J.S.W. and Quispel, G.R.W., ‘Reversing k-symmetries in dynamical systems’, Physica D 73 (1994), 277304.CrossRefGoogle Scholar
[20]Lamb, J.S.W. and Roberts, J.A.G., ‘Time-reversal symmetry in dynamical systems: A survey’, Physica D 112 (1998), 139.CrossRefGoogle Scholar
[21]Lang, S., Algebra, Revised 3rd edition (Springer, New York, 2002).CrossRefGoogle Scholar
[22]Lind, D. and Markus, B., An introduction to symbolic dynamics and coding (Cambridge University Press, Cambridge, 1995).CrossRefGoogle Scholar
[23]Llibre, J. and MacKay, R.S., ‘Pseudo-Anosov homeomorphisms on a sphere with four punctures have all periods’, Math. Proc. Cambridge Philos. Soc. 112 (1992), 539549.CrossRefGoogle Scholar
[24]Roberts, J.A.G. and Baake, M., ‘Trace maps as 3D reversible dynamical systems with an invariant’, J. Stat. Phys. 74 (1994), 829888.CrossRefGoogle Scholar
[25]Roberts, J.A.G. and Baake, M., ‘Symmetries and reversing symmetries of area-preserving polynomial mappings in generalised standard form’, Physica A 317 (2003), 95112 math.DS/0206096.CrossRefGoogle Scholar
[26]Roberts, J.A.G. and Quispel, G.R.W., ‘Chaos and time-reversal symmetry — order and chaos in reversible dynamical systems’, Phys. Rep. 216 (1992), 63177.CrossRefGoogle Scholar
[27]Roberts, J.A.G. and Vivaldi, F., ‘Signature of time-reversal symmetry in polynomial automorphisms over finite fields’, Nonlinearity 18 (2005), 21712192.CrossRefGoogle Scholar
[28]Wilson, R.S., Reversibility of cat maps, M.Sc. minor thesis (Univ. of Melbourne, Victoria, 1997).Google Scholar
[29]Schmidt, K., Dynamical systems of algebraic origin (Birkhäuser, Basel, 1995).Google Scholar
[30]Silverman, J.H. and Tate, J., Rational points on elliptic curves (Springer, New York, 1992).CrossRefGoogle Scholar
[31]Wright, D., ‘Abelian subgroups of Autk(k[X, Y]) and applications to actions on the affine plane’, Illinois J. Math. 23 (1979), 579634.CrossRefGoogle Scholar