Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T22:36:49.420Z Has data issue: false hasContentIssue false

Some product varieties of groups

Published online by Cambridge University Press:  17 April 2009

R. A. Bryce
Affiliation:
The Australian National University, Canberra, ACT.
John Cossey
Affiliation:
The Australian National University, Canberra, ACT.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider varieties with m prime to p. We show that the subvariety lattice of distributive and has descending chain condition and that is its only just non-Cross subvariety. When m is prime we determine the join-irreducible subvarieties of . The method involves fairly detailed description of the structure of non-nilpotent critical groups in .

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1970

References

[1]Brady, J.M., Bryce, R.A. and Cossey, John, “On certain abelian-by-nilpotent varieties”, Bull. Austral. Math. Soc. 1 (1969), 403416.CrossRefGoogle Scholar
[2]Brooks, M.S., “On varieties of metabelian groups of prime-power exponent”, submitted to J. Austral. Math. Soc.Google Scholar
[3]Bryant, Roger M., “On some varieties of groups”, Bull. London Math. Soc. 1 (1969), 6064.CrossRefGoogle Scholar
[4]Bryce, R.A., “Metabelian groups and varieties”, Bull. Austral. Math. Soc. 1 (1969), 1525.CrossRefGoogle Scholar
[5]Bryce, R.A., “Metabelian groups and varieties”, Philos. Trans. Roy. Soc. London Ser. A 266 (1970), 281355.Google Scholar
[6]Cohen, D.E., “On the laws of a metabelian variety”, J. Algebra 5 (1967), 267273.CrossRefGoogle Scholar
[7]Cossey, P.J., “On varieties of A-groups”, Ph.D. Thesis, Australian National University, Canberra, 1966.Google Scholar
[8]Curtis, Charles W. and Reiner, Irving, Representation theory of finite groups and associative algebras (Interscience, New York, 1962).Google Scholar
[9]Hall, Marshall Jr, The theory of groups (Macmillan, New York, 1959).Google Scholar
[10]Higman, Graham, “Complementation of abelian normal subgroups”, Publ. Math. Debrecen 4 (1956), 455458.CrossRefGoogle Scholar
[11]Higman, Graham, “The orders of relatively free groups”, Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ., Canberra, 1965 (Gordon and Breach, New York, 1967).Google Scholar
[12]Higman, Graham, “Some remarks on varieties of groups”, Quart. J. Math. Oxford Ser. (2) 10 (1959), 165178.CrossRefGoogle Scholar
[13]Kochendörffer, Rudolf, “Über treue irreduzible Darstellungen endlicher Gruppen”, Math. Nachr. 1 (1948), 2539.CrossRefGoogle Scholar
[14]Kovács, L.G. and Newman, M.F., “On critical groups”, J. Austral. Math. Soc. 6 (1966), 237250.CrossRefGoogle Scholar
[15]Kovács, L.G. and Newman, M.F., “Just-non-Cross varieties”, Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ., Canberra, 1965 (Gordon and Breach, New York, 1967).Google Scholar
[16]Kovács, L.G. and Newman, M.F., “On non-Cross varieties of groups”, J. Austral. Math. Soc. (to appear).Google Scholar
[17]Lyndon, R.C., “Two notes on nilpotent groups”, Proc. Amer. Math. Soc. 3 (1952), 579583.CrossRefGoogle Scholar
[18]Neumann, Hanna, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg, New York, 1967).CrossRefGoogle Scholar
[19]Gates, Sheila and Powell, M.B., “Identical relations in finite groups”, J. Algebra 1 (1964), 1139.Google Scholar
[20]Taunt, D.R., “On A-groups”, Proc. Cambridge Philos. Soc. 45 (1949), 2442.CrossRefGoogle Scholar
[21]Vaughan-Lee, M.R., “Abelian by nilpotent varieties”, Quart. J. Math. Oxford Ser. (2) (to appear).Google Scholar