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Some product varieties of groups
R. A. Bryce and John Cossey

We consider varieties V¥ =A A A with m prime to p . We
p
show that the subvariety lattice of V is distributive and has

descending chain condition and that A A 1is its only Just

non-Cross subvariety. When m is prime we determine the
Join-irreducible subvarieties of ¥ . The method involves
fairly detailed description of the structure of non-nilpotent

critical groups in Y .

1. Introduction

The principal motivation behind many investigations in the theory of
varieties of groups since its inception seems to have been a desire to
decide whether or not every variety requires only finitely many laws to
define it; and a large number of varieties do have this property (which
is usually known as 'the finite basis property'). The papers [1], [3],
(61, (113, [17], [21], for example, all contain finite basis theorems.
There have been conjectures that every variety has the finite basis
property ané, more cautiously, that every soluble-of-finite-exponent
variety does. Recently, however, two (unpublished) counter-examples to
this have been produced: the first, by A.Yu. Ol'shanskii, is soluble of
length 5 and exponent 120 and the second, by M.R. Vaughan-Lee, is
soluble of length L4 and exponent 16 . One of the results proved here
(Theorem 5.1) goes a small way towards closing the gap between these

examples and known finitely based varieties of smaller soluble length.

Even before these examples of Ol'shanskii and Vaughan-Lee were known

the range of questions considered, for locally finite varieties at any
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rate, had widened considerably as people found that, from methods
developed to prove finite basis theorems, much more information could be
obtained; see, for example, [1], [2], [4, 51, (7], [15], [16]. The test
questions, on which one can determine the efficacy of one's methods for

dealing with a given variety V¥ then, include those following.

a) Does Y , and all its subvarieties, have the finite basis

property?

b) Is the lattice MA(Y) of subvarieties of V distributive?

If the answer to (a) is 'yes' for V¥ then every subvariety of YV can be

written as a finite join of (finitely) join-irreducible subvarieties.
c) What are the join-irreducible subvarieties of Y ?

If V is not a Cross variety it has subvarieties which are just non-Cross

(Kovacs and Newman [16]).
d) What are the just non-Cross subvarieties of V ?

This list is far from exhaustive, of course - we have not, for
example, mentioned Graham Higman's interesting question about the orders
of the free groups of ¥V , (§2 in [72]) - but it is with these questions
in mind that the present paper has been written. The varieties ¥ with

which we will be concerned are A A A where p 1is a prime not dividing
p
m ; we answer {a), (b) affirmatively and provide answers to (c), (d).

The reader is referred to Hanna Neumann [18] for definitions and
terminology about varieties of groups and to Curtis and Reiner [§] for

representation theory.

The technique employed involves fairly detailed description of the
structure of non-nilpotent critical groups in ¥V , and may be regarded as
a natural development of the methods of Chapter 3 in [5] (see also [4]):
in particular the concepts of bigroup and variety of bigroups used there
will be needed here. The structure theorems are proved in §4, while other
preliminary results which will be needed in §5 are introduced in §§2, 3;

§2 deals with representations of groups in A A over fields of
characteristic p and §3 with enough representation theory over the ring

of integers modulo pa for our present purposes.
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A convention used needs comment. If A 1is an abelian normal
subgroup of a group G we shall often regard A as a G-module and may,

without comment, write A additively. The action of elements of G on

A4 will be written o (a € 4, g € G) , ‘but note that other linear
transformations of A4 may be written as right multiplication; thus if e
is an endormorphism of the module A we write qge for the image of «

under e .

2. Representations of A A groups

For convenience we start by stating a well-known theorem in a form

appropriate for our purposes (see Higman [10, Lemma]).

LEMMA 2.1. Let A be an abelian p-group, K a finite group of
automorphisms of A and K, a normal p'-subgroup of X . If A, s

the subgroup of A whose elements are fixed by every element of KX, then
A, has a complement in A which adnits K .

This section is devoted to proving the following theorem.

THEOREM 2.2. Let p be a prime and m a natural number prime to
p,and let K in A A be a finite group which has a faithful

irreducible representation over a field E of characteristic p . All
the faithful irreducible representation modules for K over E are
prineipal indecomposables and the representations they afford form a

single linear isomorphism class.

Proof. Start by assuming that £ is algebraically closed and let
M be a faithful co-monolithic module for K over £ , with unique

maximal submodule Mo , say. Write § for the normal Hall p'-subgroup

of K : notice that S is not 1 . By Maschke's Theorem there exists an

irreducible submodule N of MS

dimensional and, since S is normal in K , Nk is a submodule of MS

outside Mo ., Now N is one

wvhenever k € K . Hence if T 1is a transversal of K to S
(2.3) M= ] Nt.
tel
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Suppose k € X is such that N = Nk . That is, there is a

one-to-one linear transformation © : ¥ - Nk such that
(2.4) (ns)0 = (nB)s , s€S, nenN.

However § acts simply as a scalar multiplication, say mns = na(s) where
of(s) € E; so that if #n0 = n'k , then nr» »n' is a linear

transformation and
(2.5) (ng)' = (na(s))' = n'a(s) =n's , n€N , s€5 .
We conclude from (2.4) and (2.5) that

(n'k)s = (ne)'k = (n's)k, n' €N, s €5,

whence it follows that [S, k] < kerN . Now S centralizes X' and
therefore [S, k] is normal in K . Lemma 2.1, and the fact that M is
faithful and indecomposable, ensures that [S, k] =1 ; but CK(S) =5

or else K would have a non-trivial normal p-subgroup and could not have
a faithful irreducible representation over ¥ . Hence %k € S and it
follows from (2.3) that

(2.6) M= ® Nt .

We have shown, therefore, that the dimension of ¥ is IK : SI . A

simple application of Lemma 2.1 and Maschke's Theorem shows that M/Mo is
faithful and, being irreducible, is co-monolithic, so that

dimM = dimM/Mo 5
in other words Mo = 0 . The first statement of the theorem is now proved

(for closed fields) by observing that a principal indecomposable for X
over E 1is co-monclithic and that it is faithful if the co-monolith is

faithful.

The restriction on the field can now be removed. If V is a
faithful irreducible module for X over E , and E* 1is the closure of

E then, by (70.15) of Curtis and Reiner [§], E* @% V is completely

reducible and each irreducible component is faithful, hence projective, by

what has already been proved; and therefore E* 8% V 1is projective.

This in turn will imply that V¥ 1is projective. For, if
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vV
lu
—E v,— 0o
is a diagram with exact row then there exists Y#* such that the diagram

Bt @, V

o fes

E* @ V l—"a—@E*@EV——»o

commutes. If v € V and (1 ® v)y* = Z e, C)vi (where

{1=e,e,, ...} is a basis for E* over E) it is easily checked that

o’ "1’
Y : ve vy, 1is an FEK-homomorphism such that YB = o , as required.
Finally then, V is a direct sum of principal indecomposables and is

therefore itself a principal indecomposable.

To proceed further, more structure on K is required. The lemma
that follows comes either directly from, or by routine modification of,

results of Kochenddrffer [13] and Taunt [20].

LEMMA 2.7. S is a direct product of indecomposable normal

homoey lic subgroups s, (L=< <=2r) of K. Moreover each oS, s a

minimal normal subgroup of K and oK 1is their direct product, this
being the unique decomposition of OK as a direct product of minimal

normal subgroups of KX .

In order to prove that the faithful irreducibles of X over FE form
a single linear isomorphism class it suffices, by Theorem 2.5 in [7], to
assume that E 1is algebraically closed. If, then, M 1is a faithful
irreducible module for K over E (2.6), and (44.1) in [&], ensures that

(2.8) R
where N is a one-dimensional submodule of MS . The proof consists in

choosing a basis for M and a set of generators for X , depending on M ,
and evaluating the matrices representing these generators; it will be

obvious that the linear group they generate is independent of M .
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In (2.6) T may be chosen as a complement for S and is to be fixed

throughout. Also the subgroups S (1 =4 =»r) in Lemma 2.7 are to be
fixed. Regard OSi and Si/Q[Si] as T-modules over a field of prime
order (NOTE: Si has prime-power order); they are easily seen to be
isomorphic and hence, by 12.2.2 of [9], keroS, = CT(Si) . With at most
one exception (by Lemma 2.7 at most one Osi is central in K)

|7 : CT(Si)I is therefore equal to p ; choose a fixed ¢, € T\ CT(Si)

Next, given the faithful irreducible module M choose N so that (2.8)
holds; let L = kerN . Note that S/L is cyclic, hence Si/SinL are

all cyclic and that, because of Lemmas 2.7 and 2.1,

(2.9) |S7;/SinL| = expS; , [S/L| = expS , 1 =i =<np.

Choose an element & € S\L whose order is expS .

The following lemme is vital.

LEMMA 2.10. Let V be a free module of rank p over the ring of
integers modulo q° (q a prime), and let v, (¥ qV) be a free

submodule of V of rank p - 1 . H=(h) 1is a q'-cycle acting
faithfully and indecomposably on V . There ig a basis {vl, vees vp} of

V such that v, €V, (1=1=p1) and

0
(2.11) v.h =0, 1=1¢=p-l.

Moreover the matrices representing h with respect to all bases with the
property (2.11) are the same.

Proof. No proper submodule of V , not in ¢qV , admits & . It
follows easily that if

= -1 .
Ui = Vo n Voh N ...n Voh , 12 =<p,
then the rank of Ui is p -7 . Choose O # vp—l € Up-l . Since
Up-l = Up_2 n Up_gh there exists vp—2 € Up-2 such that vp—l = vp_2h
and vp—2 f Up_1 . In a similar fashion choose vp—3’ e vl (E VO)
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and define v h . Now {vl, ve., U_ .} is & basis for v, by

o~ Yo p-1

construction and hence up ¢ V0 so that {vl, ey vp} is a basis for

V , and has the desired properties. Notice that the coefficients in the

expression for vph are coefficients of the minimum polynomial for h .
This completes the proof of Lemma 2.10.

Choose a basis {vi )} for Si respecting Si nL as

10 0 Yipd

in the lemma, with ti playing the r8le of h : for convenience set
§; = vip(i) . Then there exists an integer mi , independent of L , such
that

m. u

g = s; modL

Uu. u.

- 7 ; . :
where [u., exPSi) =1 . However {uil’ ey vip(i)} is still a basis

7
for Si with the properties of Lemma 2.10, so, without loss of generality,

m.
(2.12) s ¥ = s; modl .

Now si is a generator of Si as T-module and the action of T on si
depends only on that of ti ; specifically, to each ¢ € T there exists
an integer T(Z, t) , independent of L by Lemma 2.10, such that

¢ s sT(t’t) m

8.

= odlL .
1 7

Finally Tet N =sp{n} , ns=an (0 € E) ,and B={n® ¢ : ¢t ¢ T}
be our basis for M (from (2.8) this is possible). Note that

. o,=-1
-1 .-l m.t(i,t7")
(n@t)si=n®tsi=n®sz t=nsz(‘b’t )®t=a7' n®t) .

If U is the representation afforded by M then, with respect to B ,
siU has diagonal matrix, and the diagonal entries are powers of o . Our
choice of the quantities mi , T{i, t) was independent of M . Hence if

U' is a faithful irreducible representation of X and o' is the

analogue of a , then o' is a power of o and so, with respect to a
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suitable basis, séU' is a power of s&,U . Since the matrix of ¢U with

respect to B is a permutation matrix for all ¢ € T we see that the

linear group XU is independent of the faithful irreducible U .

3. Further preliminaries

Let p be a prime and Ra the ring of integers modulo pa . We
need some facts about representations over Ra s analogues of well known
facts about representations over fields.

If XK is a finite group the group ring RaK has minimum condition

on right ideals. Let RaK =

@O
@

Ai be a decomposition of RaK as a
7

direct sum of indecomposable right ideals. Since HQK/pRuK and pa—;RaK

are isomorphic vector spaces over R; it follows in a familiar fashion

that each 4. is a free R -module. By (54.11) in [&] each Ai/pAi is
a principal indecomposable of RX .
Next suppose that WN; is an irreducible module for X over R, ,

and write &, = EndKNl , & finite field isomorphic to GFde] , say. Let

1
C; be the multiplicative group of £E; ; then N, is a (jK-module over

R; and we shall show that if #¥N; 1is projective as R;K-module it is
projective as R;C;K-module. Choose a fixed isomorphism ¢ : GF[pd] - B
thus turning ¥; into a GF(pd)K—module - call it ﬁl . Now ﬁl is
projective since it occurs as a direct summand of GF(pd) @hl Ny , and N

is projective (using somewhat more than 70.15 of [§]; L.G. Kovédcs

(unpublished) has proved our assertion). If ¢ € ] there exists
e ¢ GF(pd] for which, in W, ,
ne=ne , neN ;

and using this and the projectivity of ﬁl one easily checks the
commutivity of the diagrams which ensure that N, , as R C K-module, is

projective.
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The last two paragraphs are now brought together. Let Na [a € I+]

be homocyclic groups of exponent pa , say with N_ = Na/pBNa (. = B) ;

B

Ea is the endomorphism ring, and Aa the automorphism group, of Na .

Define M : Ea > EB by

af
x+pBN (eu ) = xe + pBN x €N e € L
(1 aB a’ a’ a '

It is easy to see that ua is an onto ring homomorphism such that

B

= > > . .
“aB“By ”av (a 2 B8=v), and that the restriction Vos of Hap to Aa

as multiplicative homomorphism is onto AB . Buppose now that X; is a

subgroup of A; such that ¥, , as R;K;-module, is irreducible and

principal indecomposable. If, as above, El = EndK Nl and C; 1is its
1

multiplicative group then N; as R;C;K;-module is principal

indecomposable and hence there are subgroups Ca, Ka of Aa , which

centralize each other, such that val takes Ca isomorphically onto C(y

and Ka isomorphically onto KX; . We may assume also that Kavas = KB )

Cv _ =¢C

«Vos g * In this set up we have

LEMMA 3.1. 4s RaKa-moduZe Na has the double centralizer

property. Also if E, = Endy N then every element e of E, can be
a
written uniquely as

o=1 i
pe;,, ¢, €C U {o} .

[\
i}

=0

Proof. The double centralizer property is proved first, by induction

on a; for o =1 it is true by (26.4) in [8]. We show in fact that if

£ ¢ Ea and & centralizes Ca then § = z riki for scme r. € Ra and

k. e X .
7 a

Notice that kerp IEG and that guaa-l centralizes C

= a_
ao-1 - P a-1

and so, by induction, there exists ré €R , ké € K, so that
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= PR a-1
(3.2) g = Zriki +p e

for some e € Ea . Since A :x + pi, > pa_lx is a group isomorphism of

N, onto p°"11va and, from (3.2), pa_le centralizes Ca , for all

e € Ca and all x € Nu we have

o-1

(x+pIVa) ((ec)ual]A = (xec+plva))\ =p (zee)

= z(pa-le]c = ze(p®te) = (x+plva) ((ce)ual))\ .

Hence (ec)uo‘l = (ce) Therefore centralizes () . As

Hal - ety

= : ' " n
kerd . pEa there exists e éEa » ry; € R end ki € Koc such that

e =] rik? + pe'
Combining this with (3.2) yields the desired result. The remainder of
Lemma 3.1 can be proved by entirely similar methods.
It is well-known that there exists a linear transforwation B; of
Ny such that BIleBI =eP (e €E|): as E,-space N, is completely

reducible and, on each irreducible component of N; , e and P have
the same minimal polynomial and the matrix of each is similar to the

companion matrix of this minimum polynomial. More generally we have

LEMMA 3.3. There exists Ba € Ea such that
-1 B
B e, =F , cec,

The proof of this will follow from the next lemma and the fact that

kerv, is a p-group (12.2.2 in [9]).

1

LEMMA 3.4. Two p'-elements of a finite group are conjugate if and

only if they are conjugate modulo a normal p-subgroup.

Proof. Suppose that X is a finite group, Y is a normal
p-subgroup of X and x;, x, are conjugate modulo Y . It suffices to

assume Y 1is abelian. For each t € Yh there exists Yy € Y such that
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We show that for some ¢ , Y. € C , the centralizer of x, in Y . For,
-1 t =u
suppose t, u are such that Y, € C 3 then xjx; € C and so

[ﬁ-lt, x;u] € C . Now C has a complement Y; in Y by Lemma 2.1,

which admits x, . Write Wl = cy; (e €C,y, € ¥Y;) and then

-U -1 -1 -1
I:cyl, xl} = [cyl, yu:x:2:| = [yl, xe] EYlnC=l N

1

whence y; =1 . Therefore u ~t € C . It follows that, if 7T is a

transversal of Y to C , {yt : t € hf} 1is also a transversal of Y to

C , and hence for some ¢t , Yy centralizes X, as we asserted above.

For this ¢t , [xﬂn=xgy: which, if » is the l.c.m. of the (p'-)

orders of x;, x> , gives yz = 1 whence yt =1 , completing the proof.

LEMMA  3.5. Two faithful principal indecomposable RGK—moduZes N,
and P #ﬁﬁlﬂwﬂywmwmwr@mwmmwmifmdm@ifNJWG
and Pa/pPa afford (faithful) linearly isomorphic representationg of
RiK .

Proof. The 'only if' direction is easy, so suppose that Na and Pa

afford representations T, U respectively and that the representations

7', U' +thereby induced on Na/pNa and Pa/pP01 are linearly iscmorphic.

That is, with respect to suitably chosen bases, the matrix groups KXT'

and KU' are equal. Hence there is an automorphism A of K such that
KAT' = kU' , k €K.

The module Na/pNa affording the representation AT' is therefore

isomorphic to Pa/pPa . Hence by (5k.1L4) in [&], and the remarks at the

beginning of this section, Na as module affording the representation AT

is isomorphic to Pa . In particular, with respect to suitably chosen
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bases, the matrix groups XAT and KU are equal. Hence T, U are

linearly isomorphic.

Suppose that V,, ¥V, are irreducible modules affording faithful
representations T;, T, of a group X . One can form the groups X;, X,
by split-extending V;, V, by X with actions T;, T, respectively. It
is easy to check that T; is linearly isocmorphic to T, if and only if
X; and X; are isomorphic groups. In view of this we have the following

corollary to Lemma 3.5.

LEMMA 3.6. If X <s an irreducible linear group acting on a space
Ny over Ry , the split-extension is a uniquely determined critical

group. If, moreover, Ny, as RiK-module is principal indecomposable then
to each o € I there exists a unique split-extension v K such that

NaK/pIVa = NK ; N K is critical. Furthermore if N is abelian of

exponent pa and_an extension NK exists such that NK/pN = NiK then N

18 homoeyelic and, indeed, principal indecomposable as RaK-moduZe, and

NK = N XK.
o

Proof. The existence of NaK has already been shown, and the

criticality follows from (1.65) in [74] of Kovacs and Newman. That N is

homocyclic follows from the fact that x + pN » pa—lx is a
K-homomorphism. The remainder will be proved by Lemma 3.5 when we show
that N 1is principal indecomposable. This follows easily from the

projectivity of Na .

4, Structure of certain critical groups

Let G be a critical group the last non-trivial term of whose lower
nilpotent series, A say, is abelian. Then, by Theorem 3 in [10] of
Higman, A has a complement B in (G . Since (G is monolithic, A4 is
self-centralizing in G and, for some prime p , A 1is a p-group. We
will be interested in cases when B = H x K with H the maximal normal
p-subgroup of B and K a group whose faithful irreducible

representations over GF(p) are projective: whenever G is
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abelian-by-nilpotent of G € A AA (p fm) , and G 1is not nilpotent,
£ o=mp
p
this is easily seen to be the case (using Theorem 2.2 in the latter case).
In this section we describe the structure of A as B-module: in fact

we show that it suffices to obtain a description of 4 and AK . Our

H

aim is to construct another group (denoted later by G#) which generates

the same variety as (G but which is easier to work with then G itself.

As B-module, then, A is faithful and monolithic and, by 51.37 in

[18], co-monolithic also; let Ao be the unique maximal submodule of

A . Write A* =pA + (A, H] so that A* = Ao . Choose

hij € Zi(H) - Zi-l(H) (1<i=se, 1s4=r(d) - H nhas class ¢ ,
say,) such that
A('L) = [A’ hll, “eey hll’(l)’ ceey hil’ ceey hir(i)]

is non-trivial for each < € {1, ..., ¢} but that

(42), z,(8)]

1, 121 =e¢.

Let pG be the exponent of A(c) . Then it is easy to check that the
mapping

-1

§
. + l 1 ]
E‘a A* & 2498 hls""hlr( )’ trrr Tyt cr(C)]

is a non-zero B-homomorphism of A/A* . Now 04 is in (4/A*)f and is
therefore centralized by H ; hence K acts irreducibly on 0A and, by

Lemma 2.1, faithfully also. But our assumptions on K mean that (OA)K
is injective so that
(A/A*)E =cA®U

wvhere U admits K and therefore B since H acts trivially on
(A/JA*)E 3 thus U =0 and (A/A*)E = 0A . It follows that kerf = A la*

and that, as B-modules,

(4.1) A/Ao Z04 .

We aim now to delineate the module structure of A commencing with
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the next lemma.

LEMMA 4.2. There exists a principal indecomposable submodule N of

A, such that N/pN = 0A as R,K-modules and N generates A as

K
H-module.
Proof. Since (OA)K is projective so is (A/Ao)k by (4.1). Hence

there exists a submodule (; of AK so that

But C,/pA = A/A, so, for the same reason, there is a submodule (p of
Cl such that Cz + pA = Cl N Cz 2} pA = PCI and C?_/pCI B A/Ao . In
this way construct a descending sequence of submodules Ci such that

C,b./pc.

o1 A/Ao . For some j we must have pCJ. = pCJ._l which means

that CJ./pCJ. = A//lo is irreducible and the last assertion of Lemma 3.5
then gives that Cj is a free Ra-module. Note that Ci *Ao for any
1 . Put N = Cj and then, since N admits X , N generates 4 as
H-module, whence N has exponent pa . This completes the proof of Lemma
k.2,

Let the N of Lemma 4.2 have Ra-ha.sis {nl, cees ns} . Write Mi
for the H-submodule of A generated by n, (1 <7 <s8) . Using

von Dyck's theorem one checks that group isomorphisms 61: : MlH -+ MiH may

be defined by

The mapping

s
(m,n)»Zr.[mG.),meMl,nEN
= v

where n = 2 ron. s is easily seen to be balanced. Hence there exists a

homomorphism T of Ml ®R N onto A such that
o
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(m@®n)t =

N0

i]_ri(mdi)’ meé€M, , ne€bnN.

Moreover, if H x K acts on Ml ®R N in the usual outer tensor product
’ a

fashion:
(m@n')'hk=mh®nk, me€M, , n€N, hkeHxK,

then T 1is an H X K-epimorphism. Define G# to be the group obtained

by split-extending M1®R N (= A#) by HXxX K ; then T extends toa
o

#

group epimorphsim T : G + G .

"Next write F = EndK N . We can extend the action of E to the

#

whole of A" by identifying F with 1 Q®F :

m@nle=m@ne , meM , n€N , e€E.

Then, by Lemma 3.1, kerT admits £ . Consequently A may be regarded

as an F-space. In this set up we have:

THEOREM 4.3. If M is the EH-subspace of A generated by n,
then, as E(H x K)-modules, '

A=EM ®E N.
- T, 1+l , .
Proof. Since each space p“N/p~ "N (0 <=4 < a-1) is a vector space
over the field E/pE =E; , N has an E-basis {Zl, ceey Zt} with
1, = n, , say. Then, copying the construction of G# and T , we find an

E(H x K)-homomorphism

V:M@EN+A

onto A . We will show that v 1is one-to-one.
The construction of v gives first
(4.h) ne€N-pl , me€M and m®On € kerv = m=0 ;

and second
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(k.5) oM@ N) =M@, NE oM ®, W/pH .

Since 0M®E N 1is centralized by H it follows from (L4.L) and (4.5) that
0 # (U(M ® zv)]v < Z(4H) = 0A

hence [O(M ®E N)]\) = 0A . Write D = kervn O(M ®E‘ IV) . Then, regarding
oM ®E’ N} as an E;-space (vy (h.S)) , and 04 also, we find that the
co-dimension of D in O(M ®E’ IV) is precisely dimcA = dimE N=1¢t.
Suppose that oM contains elements m;, m, which are E-independent and

therefore F)-independent. Using (4.5)
dim(m, ® N/pN + my, ® N/pN) = 2dimN
whence, if D # 0 ,
Dy =Dn (m ®NpN +my ® N/pN) # 0 .
If d €D, then, for suitable z;, X, € N/pN we have
d=m Qxy +my @ x5 ,

and (4.4) shows that the relation u : x; » x, is a mapping from

Xy ={x; € N/pN :d € D1} to X, = {x, € N/pV : d € D1} . 1Indeed since
D, # 0 and N/pN 1is an irreducible F K-module, X, = X, = N/pN and
O #u € E} . Hence for some non-zero x; € N/pN ,

(my+myu) ® x1 € Dy

and (4.%) implies m; + myu = O contrary to the independence of m; and
my . Therefore D =0 and hence kerv =0 . If the FE-dimension of &N
is one then clearly kerv = 0 ; in any case Vv 1is one-to-one and Theorem

4.3 is proved.

The proof just completed shows that oM is a one dimensional

E;-space. Since oM; < oM we have

COROLLARY 4.6. The dimension of oM, as R)-space is at most the

dimension d of Ey over Ry .

Write A4 = (Ml ®Ra E) @E N so that there is an FE-isomorphism

Az A A# which has
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A:{m®1)@®@nerm ®n , m €M , ne€N.
Moreover if we define the action of H X X on A4 1in the natural way:

(moenen™=-me) ek, meu , nen,

then A is an H x X homomorphism; and if 5 is obtained by extending
2 by H x K in this action, A extends to a group isomorphism

A 5 =) G# . In this set up one easily checks, using Theorem 4.3

LEMMA 4.7. There exists an EH-submodule L of Ml ®R E such
a
that kerAt =L ®E N .

Next let B = Ba of Lemma 3.3 and let Y : E > EF be defined by

Then it is simple to check that

(1.8) Mgl (1ey)est, osis=da.
d-1 :
LEMMA 4.9. N (xert)B” =0 .
1=0
d-1 1
Proof. It suffices to show that N (L @% N]ABtk = 0 which, by
=0
d-1 i
(4.8), will follow if N L(L®Y ) =0 . Write U=1L n oM ®E) so
i=0

that we need only prove

d-1
(4.10) N
1=0

U(l@Yi] =0.

Analogously to (4.4) and (4.5) we have:
(4.11) m €M , e €E-pE and m Qe €L = m =0 ;

(4.12) oy ®Ra E) = oM, ®R1 E, .

The force of (L.12) is that to prove (4.10) we may assume that we are

working in a vector space over a field F; , where Y 1is now the Galois
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automorphism e; » eq of E; . The following rather technical lemma will
prove (4.10).

LEMMA 4.13. Let V be a proper non-zero submodule of oM, &, E,
1

and 1 be maximal with respect to the property that, whenever S ig a
linearly independent subset of oM, containing at most 1 - 1 elements,

(b.1k) 0=Vn@®d tRE, .
teS

Then, ©f §' <8 a linearly independent subset of oM, containing 1

e lements

0=VnVi®Yn & t®E .
tes!

Proof. Observe first that the co-dimension of V in oM) ® E; is
at least *1 - 1 and that, if S§' is a linearly independent subset of

oM, containing 1 elements,

0#V(S')=Vn ® tOE
teS'

We emulate the argument following (L4.5). For all v € V(S') then,

v=] t®uz,
teS'
for some x, € El . By virtue of (L.1Lk) for each t € §' the
correspondence T, P is one-to-one for each t' € §' , and is indeed,
an E;-endomorphism of E; . Consequently there exist elements S'(¢) of

E, , linearly independent over R; by (L.14), such that

(4.15) v(s!) = { ] t®x5'(t) : x ¢ El} .
teS'

Next define, for a linearly independent subset S of OM; containing

exactly I - 1 elements, and a basis B of OM containing S ,

%

=S5uf{pl, beS=B-5.
Then, using (L4.15), the V(Sb) clearly generate their direct sum and each

V(Sb) has Ej-dimension 1 . Hence (Sb) has co-dimension 7 -1

® Vv
beS
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and therefore

(4.16) ve @ v(s,) ;
bes

in particular V has co~dimension exactly 71 -1 .

We now show that for all S and B as above

2l

(4.17) VnV(sb)1®y=o , be¢

Suppose that w € V(sb) and wl1®y €V . From (4.15) and (4.16)

wl®y=(z t®x$b(t)]l®y= ) t® z;5.(¢)
tes, J€S tes. J
J
for some <X, xj € El . This implies at once that for J #5b , xj =0

since J C)ijj(j) occurs once only on the right and not at all on the

left. Hence

I t®(a)s ()P = | t®ax,5,(¢)
tesb b teSb b°b

so that
P _
(xy)sb(t) = :x:bSb(t) , Tt € Sb .
If t, t' are distinct elements of Sb (under the hypotheses |Sb| = 2)
then xb{Sb(t)Sb(t)-p - Sb(t')Sb(t')_p} = 0 from which <y # 0 implies

y{sb(t)sb(t)’p - sb(t')sb(t')'p} =0 for all y € E; . In other words

%p

= P _ ' L
0 Sb(t)sb(t) Sb(t )Sb(t ) o,
which implies [Sb(t’)_lsb(t)]p = Sb(t’)_le(t) , and this means that

Sb(t')_lsb(t) € R, contrary to the independence of Sb(t'), Sb(t) over
R} . We conclude that zy, = 0 and therefore that w = 0 , proving (4.17).

Since an arbitrary set S' of 1 independent elements of oOM; can

always be constructed as S' = Sb for suitable S and B , (4.17) yields
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(with Y replaced by Y_l)

VAVL8YN @ t®E =V1@ynV(s')= (Vnv(s'ney)1ey=0
teS

and the proof of Lemma 4.13 is complete.

Return to the proof of Lemma 4.9. By (k.11) U satisfies the
hypotheses of Lemma 4.13 with 71=2 . Now U n Ul ® Y has co-dimension
at most 2 since U, Ul ® Y each have co-dimension 1 ; but (L4.15)
shows that U n Ul ® Y has co-dimension at least 2 , and hence exactly

2 . An easy induction using Lemma 4.13 shows that

UnUL®YnN ... nUL®Y has co-dimension % + 1 in oM, @ F; and
therefore, by Corollary 4.6, is zetro for 7 = d . This proves (4.10) and
with it Lemma 4.9.

Lemma 4.9 provides a subdirect decomposition of G# which we now
7
]

describe. First note that X centralizes FE , and therefore, by Lemma

B'L

i
3.1, kert admits X (0 =4 =d-1) ; vhence (kerT)B admits X

(0 =i =<d-1) . Consequently in G s
CeNNA L= mey)eon, 0sis=dl

admits HK . Write M(Z) = (M ®E)/I1 ®y" , (0 <i =d-1) , so that
M(Z) is an FEH-module "Galois conjugate" to M . Then
Gi = 8/([,1 ® YLJ ® N is the group obtained by extending M(%) ®E N vy

H x K in the outer-tensor product fashion, and

LEMMA 4.18. ¢ is isamorphic to a subdirect product of

Go" ooy Gd—l .
Note that Go = ¢ . 1Indeed under suitable restrictions each of
Go, ey Gd-l is isomorphic to G .

LEMMA 4.19. If the faithful irreducible representations of K over

GF (pd) form a single linear isamorphism class then each of G, «-.s G5
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18 isomorphic to G .
Proof. If Ea is the ring in Lemma 3.1, taking &N; to be the
9

additive group of GF(p and K; its multiplicative group, then Lemma

3.5 shows that the faithful indecomposable representations of X over E&
are linearly isomorphic. In particular there exists ¢ centralizing F

such that K = KSE . Since Bz has the same action on E as B does we

may, without loss of generality, assume X = KB .

Now there exist H-isomorphisms mn. : M + M(Z) with the property:

(me)n, = (mni)ey’” , me€M, e€E, ©¢€{0, ..., d-1} ,

and it is easy to check that there exist isomorphisms

Si t M @% N> M(Z) @, N with the property that

(m G)n)ei =m; @)nBi , me€M , neN, ©¢€{0, ..., d-1} .

7
, ey, _ nib
Moreover if a € M @b N, (a )ei = (aei) (h €e H, k €K), and

hence the mapping Gi 1 G > Gi defined by

i
(hka)e, = kB ab, , heH, kK€K, acd

is an iscmorphsim.

COROLLARY 4.20. Under the conditions of (4.19), varG = varG' .

Proof. Use Lemmas 4.19 and 4.18.
L.G. Kovécs has constructed for us a group K which has a faithful

irreducible representation whose Galois conjugates, regarded as GF(pd]
representations, are not linearly isomorphic; indeed for this KX one can

easily construct a critical group G such that Go’ ey Gd-l are not

pair-wise isomorphic. Whether or not G and G# nevertheless generate

the same variety in general we have been unable to determine.

Summarizing this section then, we have
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THEOREM 4.21. Let G be a non-nilpotent critical group the last
non-trivial term of whose lower nilpotent series, A say, is abelian. A
is a p-group, with a complement B in G . If B =H x K where H 1is
the largest normal p-subgroup of B and K <is such that its faithful
irreducible representations over GF(p)} are projective and form a single

linear isomorphism class, then

varG = varG# .

The first four sections can now be used to answer the test questions
raised in the introduction. Much of the proof is technical in nature.

THEOREM 5.1. Ev ubvariet V=A AA (wh )
ery s y of ¥ =p ere p 18 a

prime not dividing m) <s finitely based.

THEOREM 5.2. The lattice of subvarieties A(Y) of

distributive.

18

<

THEOREM 5.3. The only just non-Cross subvariety of YV <s AA .

The join irreducible subvarieties of ¥V can be described with the
apparatus we have developed, but in general this is tedious without being
especially illuminating. We shall content ourselves with the case when m
is a prime g . Even in this case a certain amount of preamble is

necessary - it will be needed in the proof of Theorem 5.1 also.

A bigroup is a group G together with an idempotent endomorphism of
G ; alternatively G is a triple (G, 4, B) where A 1is a normal
subgroup of G and B a complement for 4 in G . Bigroups and
varieties of bigroups are discussed in [4, 5] and the reader is referred

there for more complete information.

Let F = (F, 41, B;) and D= (D, 45, B,) be bigroups in which
A}, A, are abelian groups, that is Z-modules over the ring of integers

Z . Let F #D be the group obtained by split-extending Al @% A2 by

B] x B, with the usual outer-tensor product action:
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Phe S brg b ooca, b.oeB,, i=1,2.

(a1 @ a, L 1 i i

Notice that if G is a non-nilpotent critical group in ¥ then, using

the notation of §4, G# ZF#D where F= (MH, My, H) and

D= (NK, N, XK) ; tensoring over ch instead of Z makes no difference

since Ml ®Z N = Ml ®Ra N as HK-modules. If S is a variety of

bigroups denote by SD the variety of groups generated by

{F#D:FeS}.
We record without proof the following facts:-
Fy, =F <mplies Fy, #D=<F #0D,;
tf ¢ 1is a homomorphism of F then the natural homomorphisms
By x By > Bjf x B, and Ay ®Z Ay > AT ®Z 4y extend to a

homomorphiem F # D+ Fg # D

('[_r Fi] # D is a subdirect product of | | Fi #D.
7

7
The next lemma follows easily from these three.

LEMMA 5.4. If S <4s generated by the set {Fi : 1 € I} then SD

is generated by {F, # D : 7 € I} .

)D D D

COROLLARY 5.5, (S, v S;)° =8] v S .

The join irreducibles in A(.l=\ A A ] are either locally nilpotent or
p

not; the former are described in [16] and the latter will be described in
terms of join irredicuble subvarieties of the variety of bigroups

A . o él.;p (for which see (4.3.15) of [5]) and irreducible linear groups in
p
AA
=P
THEOREM 5.6. The nom-locally nilpotent join-irreducible

subvarieties of ép AA notin épa-lé A are precisely those of the

form SD where S is a join-irreducible subvariety of A o © __Ap not in
p
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EoA and D= (D, 45, B,) has A t p* and B, € AA
E-a, ( 2 Ba) s A, of exponent p an > € AL,

acting faithfully and irreducibly on A,/ph, .

Proof of Theorem 5.3. This result is covered by a more general

(unpublished) result of J.M. Brady: &a soluble just non-Cross variety of

finite exponent, which is not A A or AAA , is contained in
= a7
A . ' . . .
A ( B) (p | n) We include a proof of Theorem 5.3 since it comes

easily; 1t suffices to show that every subvariety U of V not

containing A A 1is Cross. By Theorem 5 of Kovadcs and Newman [16],

p-groups in U have bounded class; and, in particular, nilpotent
critical groups have bounded order (51.35 in [18]). If G is a
non-nilpotent critical group in U then 51.38 in [78] ensures that #
has bounded order (using the notation of §4). If 7T is the Sylow

p-subgroup of K then (oG)T is a direct sum of regular representations

of T , by Theorem 2.2 and 65.16 in [§], and therefore var(G contains a

group, isomorphic to warT ,» Whose class is at least |T| . Hence |T|

is bounded, and Lemma 2.7 then shows that |K| is bounded. Consequently
Theorem 4.3 ensures that |G| is bounded, thus showing that U contains

but finitely many critical groups and is Cross.

Proof of Theorem 5.2, If Ei (¢ =1, 2, 3) are subvarieties of ¥
we need to show that
(5.7) My A (Hp v M) = (M) AWp) v (H) ARG,

since the other inclusion is obvious. Let G be a critical group
belonging to the left-hand side of (5.7). By (1.12) and (1.1l) of Kovécs

and Newman [74] there exist subsets L, S W (£ =1, 2, 3) of critical
groups whose monoliths are similar to OG such that

G € varL) A (varf, V varlji) ;
and if ¢ = {F(X) : x € L.} (i =1, 2, 3) (where F(X) 1is the Fitting
subgroup of X) then, using (1.14) in [74],
(5.8) F(G) € vard; A (vard, v vardj) .

Of course if (G 1is nilpotent then the members of each Ei are nilpotent
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and, by Theorem 4 in [16],
G € (varly A varlp) v (varI) v varl3z) = (W) A Wp) v (W) A ¥H3)

as required; thus assume that G 1is not nilpotent. Put

F = (MH, M1, H) in the notation of 54 and then it is clear that F, F(G)
generate the same variety (indeed the bigroups they carry generate the
same variety - ef. (3.1.6) in [5]); also write FX for the analogous
bigroup corresponding to X ¢ Ei (z =1, 2, 3) ; and write

D= (NK, N, K) . Hence, if

¥, = {Fy

:XGZ‘I:}’ t=1,2,3,
then it follows from (L.3.4) in [5] and (5.8) that
F € var¥, A (var¥, v var¥s)

But by (4.3.14) in [5], A(é 0 ® ép) is distributive and therefore
p

F € (var¥, A var¥,) v (var¥; A var¥s) .

However Corollary 5.5 shows that

¢ zFaDe (var¥, A va.r‘l’z)D v (var¥; A var‘i’3)D

< ((var‘l’l)D A (va.r\}’z)D) v ((va.r‘{’l)D A (var‘!’3)D) 3
and [var‘i’i]o < lz by Lemma 5.4. PFinally, then,

G € (ilAE.Z)V(-EI/\!ﬁ) .

Proof of Theorem 5.1. Since ¥V 1is finitely based (two applications
of Theorem 3.1 of Higman [11] show this) it suffices to prove that A(Y)
has descending chain condition. The following, easily proved, lemma will

be used.
LEMMA 5.9. A4 locally finite variety X has descending chain

condition on subvarieties if and only if to every set {Gi 1€ I+} of

non-isomorphic critical groups in X there exists 1 ¢ Y such that

(5.10) G, € var{Gj : J = i+1} .

It will be convenient to restate here some facts from earlier
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sections, in the process establishing scme notation.

(5.11). Ifr G €x

is eritical and not nilpotent the Fitting
subgroup F (= AH) of G has a complement K (see §4).

(6.12). X = ST where S €A is the centralizer in K of oKk and
T Eép ig a complement for S in K.

(5.13). By Lemma 2.7 S 1s a direct product of homocyclic subgroups
Sij (1 =g = r. ., 1=1¢= r] which are normal in K and, as normal
subgroups of K , indecomposable. (Assume that expSiJ. = exPSkZ if and
only if T =k ] The Osij are precisely all the minimal normal
subgroups of K and oK is their direct product. Put
s; = T—TTsij :1sj=r) (1=sisr).

Now for some p € {1, ..., r} let W be a normal subgroup of K

maximal with respect to containing 5152 Sp and avoiding Sp+1 ves Sr

(so that

W=55,..\5, - cpls

o+l 5.)
For 72 € {1, ..., p} and arbitrary J € {1, ..., z’i} let Xij be a

normal subgroup of X maximal with respect to containing all Skl with

(k, 1) # (¢, §) and avoiding Sij [so that

X.. ( TT .
td (k,2)#(2,4)

Skl] ' CT(Sij)}

= = <4 = fE4d =, .,
I = K/W, Aij K/Xij’ 122 =%p, 124 r.

t

LEMMA 5.14. Suppose Z(K) =1 . Then A.. =4 A=sdjsr) and

J 71

r. r.
if L=Tx] A* [where A.=A.. and A.' denotes the r.-fold
=1 ° 1 11 A 1
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direct power of Ai] there 18 an embedding W : K + I such that

(oK)u = oL .

Proof. Since Z(X) =1 none of Sij can be central, and each Aij

is isomorphic to Sij split-extended by an automorphism of order p .
Consequently up to isomorphism Aij _is independent of j . By (5313)

Wn N Xi' =1, the osij being the only minimal normal subgroups of
23
K . This completes the proof.

LEMMA  5.15. Suppose Z(K) =1 . Put C_ = C (s

T Sr) and

o+l tC

S+s
p p

§ . . R
|7 . Col =p . Then provided r.z (L=< =p), K contains a

subgroup L =T x [ | A% with oI <ok .
° i=1 ° °

Proof. Note first that the number of inequivalent non-trivial

irreducible representations of an elementary abelian group of order pu
is at most pu - 1 . Hence, since the minimal normal subgroups OSij of
K afford inequivalent representations of T , by (5.13), a subgroup of

index pu in T centralizes at most pu - 1 of the Osii and therefore

centralizes at most (pu—l) Sijls .  The proof depends on repeated use of
this fact.
. 5 . O+sp 8 . .
Since r; = p >p -1 there exists (1, 1) € {1, ..., r}

such that
€1 = CplSy41,1)) # 65 -

+
But |T : Ci;| =p so that |7 - Co n Cll = p6 1, Suppose inductively

that for some £, n with 1 =& =p and 0 =n < s we have chosen

subgroups C, (of index p) of T , with 1 =v = (§-1)s + n such that

i) if v=(A-1)s+u (1 =A=<E, O0=u=n) then
Cv = CT(Skj(X,u)) for some J(A, u) € {1, ..., rk} ;
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§+v

[T

ii) if Dv =

C, then [T : Dvl =p
w

0]

For £=1, n=1 we have done this.

S+sp _ p10+(E-L)ewn]+[(p-E+1)s-n] pSH(E-llewn _

Now re zZp

Hence there exists j(&, n+1) € {1, ..., rE} such that

C(E—l)8+n+1 - Cﬁis&j(g,n+l)J ¥ D(E—l)s+n :

Also C has index p in T and therefore

(E-1)s+n+1

; . _  6+(E-1)stn+L
|7 D(E—l)s+n+lI -

as required. In case § < p and N =8 - 1 the proof of the inductive
step is similar - we choose the next (¢ from among the centralizers of
the S£+lj .

It may happen that Dps # 1. If that is the case continue choosing
centralizers Cv , for v > ps , so that none contains the intersection of
all previous C('s : this can be done since the intersection of the

centralizers of all Sij is 1 (by (5.13)). Indeed if ICO| = pY then

Y is the first value of v for which Dv =1 . Put

Iv= n Cw'
w#

It is a simple matter to compute that

I is a complement for Co in 7 ;

o
and
for v > 0 , each Iv has order p and Co is their direct
product.
Hence if

+=138 oo S5, A2

=I8s,. <v=Es+
oo+l r En = Lfejgny » 1508840,

then clearly T#*, Agn generate their direct product and, since T'* 2T ,
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Aén = A,. , the proof of Lemma 5.15 is complete.

Suppose now that S = {Gj : J € I+} is a set of non-isomorphic

critical groups in ¥V . If infinitely many of them are nilpotent then
(5.10) is satisfied for S by Theorem 4 in [716]; hence we may suppose
(by taking an infinite subset of S instead if necessary) that all groups
in S are non-nilpotent. Further we may suppose that, inm the notation

of (5.13), the quantities r, expSi (1 =7 =r) are independent of

G € S (again by replacing S by an infinite subset if necessary).
Choose p € {1, ..., r} vy

Pl S 71 S 7 = {ri : G ¢ S} is bounded.

Then the groups I corresponding to G € S have bounded order and hence
we may suppose that ' is {up to isomorphism) independent of G . By
(5.13) Z(X) are all cyclic, hence there are but finitely many choices
for Z(K) and so we may assume that for G € S , Z(X) are all
isomorphic. As a final simplification we may assume that the sequence of

p-tuples (rl, N rp) is ordered by components in the natural ordering
of S.

With S whittled down this far we have

LEMMA 5.16. For each = € I' there exists jlx) > x and
embeddings Mg @ K> KZ for 1= j(x) such that

(ch]uxZ sok,, 1z jlz) .

Proof. For G € S we may write
K=2(kK) xX

where X has trivial centre and satisfies the conditions (5.12), (5.13);
and Z(X) is cyclic, independent of G , and of course equal to scome
Sij . By Lemmas 5.14 and 5.15 applied to the K's if we choose Jj = j(x)

so that ( )
S+r.(G }p
r;(6) = p E L 1=4

A

P >

v

then there is a monomorphism Mg X+ 22 (Z j(x)] , and this does

X
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what we want.
Finally consider the sequence in I+ defined by

. +
1) =1, Un)=4(n-1)), neIl .
In the notation introduced at the beginning of this section if Gi €S

then Gi = Fi # Di . By (4.2.29) in [5], and the analogue of Lemma 5.9

for bivarieties, there exists n € I+ such that

FZ(TI) € sVar{FZ(n+l), Fz(n+2), -} .
Consequently there exists < (= Z(n)) such that
(5.17) Fi € svar{FZ(i), FZ(i)+l’ R

Now if G ¢ {GZ(i)’ Gz(i)+l, ...} Lemma 5.16 shows that K has a

subgroup X* = k. with

OK* = ok .
Since N 1is principal indecomposable, NK* has a component W~N* which is
principal indecomposable. By Lemma 2,1 N* 1is faithful for X* and by
Theorem 2.2
4K = N.K. .
N*K Nth

Hence for each G € {GZ : 12 4(2)}, ¢t

has a subgroup isomorphic to
F # Di . It follows from (5:17) and Lemma 5.4 that
Gi € va:r{GZ : 12 4(2)} . By Lemma 5.9 the proof of Theorem 5.1 is

complete.

Proof of Theorem 5.6. Suppose that U =V is join-irreducible and
not locally nilpotent. Since U 1is generated by its critical groups it
is generated by a set S of non-nilpotent critical groups, and we may

further assume that for all G € S, expd is constant (in the notation

of §4): we may as well assume that expd are all equal to pa . We now
show that the number of similarity classes of the o6 (G € S) 1is finite

and therefore, of course, the groups of S may be assumed to belong to a
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single similarity class. The next lemma accomplishes this.
LEMMA 5.18. Let S' be a set of non-nilpotent critical groups in

Y such that for all G € S' , expd = p® and, furthermore, the sequence
{|k| : 6 € 8'} is unbounded. Then varS' = V.

Proof. Let Go be an arbitrary critical group in ¥ . We show that

Go is in varG for some G € S' , this being sufficient to prove the

lemma. It follows from Lemmas 5.1t and 5.15 (as in the proof of Lemma

5.16) that for all suitably large X , KO is isomorphic to a subgroup X
of K with

(5.19) 0k < oK .

Moreover since the index of CT(E) in T is bounded in terms of KO , We
may assume that

lep(o] = |8 | .

Put H = CT(f) . Then IVH—K is a direct sum of principal indecomposables

of HK over Ra - call one 4 say. Now since 4 is monolithic and

co-monolithic and since K acts faithfully and irreducibly on oA (by
(5.19) and Lemma 2.1) we can use 84 to deduce that
A= Ml ®R N
a
where 1‘71 is a principal indecomposable of H and ¥ a principal
indecomposable of X (this follows since 1‘71 is the regular of 7 5

hence oM, is one dimensional trivial and so o(ﬁl ® m?{ SV vhence

kert = 0) . If F = (AH, 4, H) and D

(ﬁ, I_V., E) then

e

AHK = F #D
and since F0 is clearly a homomorphic image of F N GZ (a.nd therefore
Go) is a homomorphic image of F#D . This shows that Go is in varG

for some G € S' as required.

We may assume, therefore, that for some fixed D = (D, Ay, Bz) with

A, a faithful principal indecomposable R B_-module and B, € A A ,
a 2 " =pp

2
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ces = ¢'=zF #D,3Fepn oA
I

Hence by Lemma 5.4 if S = svar{F : ¢ ¢ S} ,

By Corollary 5.5 and (1.14) of [14], S is join irreducible.

Conversely if S 1is join irreducible suppose

By (1.12) of [14] we may assume that each of U;, U, is generated by
critical groups the similarity class of whose monoliths is determined by
D . That is we may assume U;, Up generated by groups of the form F # D
(F € épa ° ép} , and hence for suitable Si € A(A_pa o ép) >

D .
Qi:si, 2=1,2.

Corollary 5.5 and (1.1k) of [74] then shows that S = S, v S, whence

S1 =28, , say, and finally U); = Uy . In other words SD is

Join-irreducible.
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