No CrossRef data available.
Article contents
Socles of Verma modules in quantum groups
Published online by Cambridge University Press: 17 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper the Verma modules Me(λ) over the quantum group vε(sl(n + 1), ℂ), where ε is a primitive lth root of 1 are studied. Some commutation relations among the generators of Ue are obtained. Using these relations, it is proved that the socle of Mε(λ) is non-zero.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1993
References
[1]De Concini, and Kac, V.G., ‘Representations of quantum groups at roof of 1’, in Operator algebras, unitary representations, enveloping algebras and invariant theory, Progr. Math. (Paris 1989) 92 (Birkhauser Boston, Boston), pp. 471–506.Google Scholar
[3]Jimbo, M., ‘A q−difference analogue of U(g) and the Yang-Baxter equation’, Lett. Math. Phys. 10 (1985), 63–69.CrossRefGoogle Scholar
[4]Lusztig, G., ‘Modular representations and quantum groups’, Contemp. Math. 82 (1989), 58–77.Google Scholar
[5]Lusztig, G., ‘Finite dimensional Hopf algebras arising from quantum groups’, J. Amer. Math. Soc. 3 (1990), 259–296.Google Scholar
You have
Access