Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T15:01:40.948Z Has data issue: false hasContentIssue false

Rigidity of Hilbert metrics

Published online by Cambridge University Press:  17 April 2009

Bruno Colbois
Affiliation:
Université de Neuchâtel, Institut de mathématiques, Rue Émile Argand 13, CH-2007 NeuchâtelSwitzerland e-mail: [email protected]
Patrick Verovic
Affiliation:
Université de Savoie, Campus scientifique, Laboratoire de mathématiques, 73376 Le Bourget-du-Lac cedex, France e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the groups of isometries for Hilbert metrics on bounded open convex domains in ℝn and show that if  is such a set with a strictly convex boundary, the Hilbert geometry is asymptotically Riemannian at infinity. As a consequence of this result, we prove there are no Hausdorff quotients of  by isometry subgroups with finite volume except when ∂ is an ellipsoid.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Benoist, Y., ‘Automorphismes des cônes convexes’, Invent. Math. 141 (2000), 149193.CrossRefGoogle Scholar
[2]Benzécri, J.-P., ‘Sur les variétés localement affines et projectives’, Bull. Soc. Math. France 88 (1960), 229332.CrossRefGoogle Scholar
[3]Busemann, H., The geometry of geodesics (Academic Press, New York, 1955).Google Scholar
[4]Busemann, H. and Kelly, P., Projective geometry and projective metrics (Academic Press, New York, 1953).Google Scholar
[5]Egloff, D., Some new developments in Finsler geometry (Ph.D. thesis, University of Freiburg, Switzerland, 1995).Google Scholar
[6]Egloff, D., ‘Uniform Finsler Hadamard manifolds’, Ann. Inst. H. Poincaré Phys. Théor. 66 (1997), 323357.Google Scholar
[7]Foulon, P., ‘Géométrie des équations différentielles du second ordre’, Ann. Inst. H. Poincaré Phys. Théor. 45 (1986), 128.Google Scholar
[8]Foulon, P., ‘Locally symmetric Finsler spaces in negative curvature’, C. R. Acad. Sci. Paris 324 (1997), 11271132.CrossRefGoogle Scholar
[9]Goldman, W.M., Projective geometry on manifolds (Lecture Notes, University of Maryland, 1988).Google Scholar
[10]de la Harpe, P., ‘On Hilbert's metric for simplices’, in Geometric group theory, I, London Math. Soc. Lecture Note Ser. 181 (Cambridge University Press, Cambridge, 1993), pp. 97119.CrossRefGoogle Scholar
[11]Kelly, P. and Straus, E., ‘Curvature in Hilbert geometry’, Pacific J. Math. 8 (1958), 119125.CrossRefGoogle Scholar
[12]Socié-Méthou, É., Comportements asymptotiques et rigidités en géométrie de Hilbert (Ph.D. thesis, University of Strasbourg, Strasbourg, 2000).Google Scholar
[13]Socié-Méthou, É., ‘Caractérisation des ellipsoïdes de ℝn par leur groupe d'automorphismes’, Ann. Sci. École Norm. Sup. (to appear).Google Scholar
[14]Verovic, P., ‘Problème de l'entropie minimale pour les métriques de Finsler’, Ergodic Theory Dynam. Systems 19 (1999), 16371654.CrossRefGoogle Scholar
[15]Verovic, P. and Colbois, B., ‘Un résultat de rigidité pour les métriques de Hilbert’, Sémin. Théor. Spectr. Géom. 18 (19992000), 171173.Google Scholar