Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T23:36:27.170Z Has data issue: false hasContentIssue false

A remark on the η-invariant for automorphisms of hyperelliptic Riemann surfaces

Published online by Cambridge University Press:  17 April 2009

Takayuki Morifuji
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153–8914, Japan e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a characterisation for the vanishing of the η-invariant of prime order automorphisms of hyperelliptic Riemann surfaces through the mapping torus construction. To this end, we introduce a notion of s-symmetry for finite order surface automorphisms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2000

References

[1]Akita, T., (manuscript in preparation).Google Scholar
[2]Atiyah, M.F., Patodi, V.K. and Singer, I.M., ‘Spectral asymmetry and Riemannian geometry I’, Math. Proc. Comb. Phil. Soc. 78 (1975), 4369.CrossRefGoogle Scholar
[3]Broughton, S.A., ‘Classifying finite group actions on surfaces of low genus’, J. Pure Appl. Algebra 69 (1990), 233270.CrossRefGoogle Scholar
[4]Casson, A.J. and Bleiler, S.A., Automorphisms of surfaces after Nielsen and Thurston (Cambridge Univ. Press, Cambridge, New York, 1988).CrossRefGoogle Scholar
[5]Farkas, H.M. and Kra, I., Riemann surfaces, Graduate Texts in Mathematics 71 (Springer-Verlag, New York, 1980).CrossRefGoogle Scholar
[6]Gilman, J., ‘Structures of elliptic irreducible subgroups of the modular group’, Proc. London Math. Soc. (3) 47 (1983), 2742.CrossRefGoogle Scholar
[7]Meyer, W., ‘Die Signatur von Flächenbündeln’, Math. Ann. 201 (1973), 239264.CrossRefGoogle Scholar
[8]Meyerhoff, R. and Ruberman, D., ‘Cutting and pasting and the η-invariant’, Duke Math. J. 61 (1990), 747761.CrossRefGoogle Scholar
[9]Morifuji, T., ‘The η-invariant of mapping tori with finite monodromies’, Topology Appl. 75 (1997), 4149.CrossRefGoogle Scholar
[10]Morifuji, T., ‘On the reducibility and the η-invariant of periodic automorphisms of genus 2 surface’, J. Knot Theory Ramifications 6 (1997), 827831.CrossRefGoogle Scholar
[11]Morifuji, T., ‘A note on the reducibility of automorphisms of the Klein curve and the η-invariant of mapping tori’, Proc. Amer. Math. Soc. 126 (1998), 19451947.CrossRefGoogle Scholar
[12]Rademacher, H. and Grosswald, E., Dedekind sums, Carus Mathematical Monographs 16 (Math. Assoc. Amer., Washington D.C., 1971).Google Scholar