Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T23:06:24.222Z Has data issue: false hasContentIssue false

Quasi-continuity with respect to semi-regularisation topology

Published online by Cambridge University Press:  17 April 2009

Stanislaw Psyk
Affiliation:
Department of Mathematics, Pedagogical University, Arciszewskiego 22, 76-200 Slupsk, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper gives some sufficient conditions under which upper, lower or both upper and lower quasi-continuity of multifunction in the process of semi-regularisation of a topological space are preserved. Analogous results for continuous maps are true.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Berge, C., Espaces topologiques. Functions multivoques (Paris, 1966).Google Scholar
[2]Engelking, R., General topology (Warszawa, 1977).Google Scholar
[3]Husain, T., ‘Almost continuous mappings’, Prace Mat. 10 (1966), 17.Google Scholar
[4]Kempisty, S., ‘Sur les functions quasicontinues’, Fund. Math. 19 (1932), 184197.CrossRefGoogle Scholar
[5]Levine, N., ‘Semi-open sets and semi-continuity in topological spaces’, Amer. Math. Monthly 70 (1963), 3641.CrossRefGoogle Scholar
[6]Mrševič, M., Reilly, I.L. and Vamanamurthy, M.K., ‘On semi-regularization topologies’, J. Austral. Math. Soc. Ser. A 38 (1985), 4054.Google Scholar
[7]Njåstad, O., ‘On some classes of nearly open sets’, Pacific J. Math. 15 (1965), 961970.Google Scholar
[8]Oxtoby, J.C., Measure and category (Springer-Verlag, New York Heidelberg Berlin, 1971).CrossRefGoogle Scholar
[9]Popa, V., ‘Asupra unei descompuneri a cvasicontinuitati multifunctiilor’, Stud. Cerc. Mat. 27 (1975), 325328.Google Scholar
[10]Popa, V., ‘Asupra unor proprietātii ale multifunctiilor cvasicontinue si aproape continue’, Stud. Cerc. Mat. 30 (1978), 441446.Google Scholar
[11]Smithson, R.E., ‘Almost and weak continuity for multifunctions’, Bull. Calcutta Math. Soc. 70 (1978), 383390.Google Scholar