Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T02:56:16.505Z Has data issue: false hasContentIssue false

Operator ideals and tensor norms defined by a sequence space

Published online by Cambridge University Press:  17 April 2009

J.A. López Molina
Affiliation:
Universidad Politécnica de Valencia, E.T.S. Ingenieros Agrónomos, Camino de Vera, 46072 Valencia, Spain, e-mail: [email protected], [email protected]
M.J. Rivera
Affiliation:
Universidad Politécnica de Valencia, E.T.S. Ingenieros Agrónomos, Camino de Vera, 46072 Valencia, Spain, e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the tensor norm defined by a sequence space λ and its minimal and maximal operator ideals associated in the sense of Defant and Floret. Our results extend the classical theory related to the tensor norms of Saphar [16]. They show the key role played by the finite dimensional structure of the ultrapowers of λ in this kind of problems.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Aliprantis, C.D. and Burkinshaw, O.Positive operators, Pure and Applied Mathematics 119 (Academic Press, New York, 1985).Google Scholar
[2]De Grande-De Kimpe, N., ‘Λ-mappings between locally convex spaces’, Indag. Math. 33 (1971), 261274.CrossRefGoogle Scholar
[3]Defant, A. and Floret, K., Tensor norms and operator ideals (North Holland, Amsterdam, 1993).Google Scholar
[4]Diestel, J. and Uhl, J.J. Jr., Vector measures, Mathematical Surveys and Monographs 15 (American Mathematical Society, Providence, R.I., 1977).CrossRefGoogle Scholar
[5]Dubinsky, E. and Ramanujan, M.S., On λ-nuclearity, Mem. Amer. Math. Soc. 128 (American Mathematical Society, Providence R.I., 1972).Google Scholar
[6]Harksen, J., Tensornormtopologien, (Dissertation) (Kiel, 1979).Google Scholar
[7]Haydon, R., Levy, M. and Raynaud, Y., Randomly normed spaces (Hermann, Paris, 1991).Google Scholar
[8]Heinrich, S., ‘Ultraproducts in Banach spaces theory’, J. Reine Angew. Math. 313 (1980), 72104.Google Scholar
[9]Komura, T. and Komura, Y., ‘Sur les espaces parfaits de suites et leurs généralisations’, J. Math. Soc. Japan 15 (1963), 319338.Google Scholar
[10]Lindenstrauss, J. and Tzafriri, L., ‘The uniform approximation property in Orlicz spaces’, Israel J. Math. 23 (1976), 142155.CrossRefGoogle Scholar
[11]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I and II (Springer-Verlag, Berlin, Heidelberg, New York, 1977).Google Scholar
[12]Mauray, B. and Pisier, G., ‘Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des spaces de Banach’, Studia Math. 58 (1976), 4590.CrossRefGoogle Scholar
[13]Pelczyński, A. and Rosenthal, H.P., ‘Localization techniques in Lp spaces’, Studia Math. 52 (1975), 263289.CrossRefGoogle Scholar
[14]Pietsch, A., Operator ideals (North Holland, Amsterdam, New York, 1980).Google Scholar
[15]Rivera, M.J., ‘On the classes of ℒλλ,g and quasi-ℒE spaces’, Proc. Amer Math. Soc. (to appear).Google Scholar
[16]Saphar, P., ‘Produits tensoriels topologiques et classes d'applications lineáires’, Studia Math. 38 (1972), 71100.CrossRefGoogle Scholar
[17]Tomášek, S., ‘Projectively generated topologies on tensor products’, Comentations Math. Univ. Carolinae 11 (1970).Google Scholar