Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T18:13:31.415Z Has data issue: false hasContentIssue false

On the number of conjugacy classes of normalisers in a finite p-group

Published online by Cambridge University Press:  17 April 2009

Norberto Gavioli
Affiliation:
Dipartimento di Matematica Pura ed Applicata, Università di L'Aquila, Via Vetoio, 67010 Coppito (L'Aquila), Italy e-mail: [email protected]
Leire Legarreta
Affiliation:
Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy e-mail: [email protected]
Carmela Sica
Affiliation:
Matematika Saila, Euskal Herriko Unibertsitatea, 48080 Bilbo, Spain e-mail: [email protected]
Maria Tota
Affiliation:
Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte don Melillo, 84084 Fisciano (SA), Italy e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1996 Poland and Rhemtulla proved that the number v (G) of conjugacy classes of non-normal subgroups of a non-Hamiltonian nilpotent group G is at least c − 1, where c is the nilpotency class of G. In this paper we consider the map that associates to every conjugacy class of subgroups of a finite p-group the conjugacy class of the normaliser of any of its representatives. In spite of the fact that this map need not be injective, we prove that, for p odd, the number of conjugacy classes of normalisers in a finite p-group is at least c (taking into account the normaliser of the normal subgroups). In the case of p-groups of maximal class we can find a better lower bound that depends also on the prime p.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Beidleman, J.C., Heineken, H. and Newell, M., ‘Centre and norm’, Bull. Austral. Math. Soc. 69 (2004), 457464.CrossRefGoogle Scholar
[2]Blackburn, N., ‘On a special class of p-groups’, Acta Math. 100 (1958), 4592.CrossRefGoogle Scholar
[3]Fernández-Alcober, G.A., ‘An introduction to finite p-groups: regular p-groups and groups of maximal class’, Mat. Contemp. 20 (2001), 155226.Google Scholar
[4]Fernández-Alcober, G.A. and Legarreta, L., ‘On the number of conjugacy classes of non-normal subgroups in a finite p-group’, (preprint).Google Scholar
[5]The GAP Group, ‘GAP - Groups, algorithms, and programming, version 4.4’, (2004) (http://www.gap-system.org).Google Scholar
[6]Kappe, W., ‘Die a-norm einer gruppe’, Illinois J. Math. 5 (1961), 187197.CrossRefGoogle Scholar
[7]Poland, J. and Rhemtulla, A., ‘The number of conjugacy classes of non-normal subgroups in nilpotent groups’, Comm. Algebra 24 (1996), 32373245.CrossRefGoogle Scholar
[8]Schenkman, E., ‘On the norm of a group’, Illinois J. Math. 4 (1960), 150152.CrossRefGoogle Scholar