Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T13:47:32.706Z Has data issue: false hasContentIssue false

ON SKEW-SUPERCOMMUTING MAPS IN SUPERALGEBRAS

Published online by Cambridge University Press:  01 December 2008

YU WANG*
Affiliation:
College of Mathematics, Jilin Normal University, Siping, 136000, People’s Republic of China (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A be a semiprime superalgebra over a commutative ring F with and f:AA a skew-supercommuting map on A. We show that f=0. This gives a version of Brešar’s theorem for superalgebras.

MSC classification

Type
Research Article
Copyright
Copyright © 2009 Australian Mathematical Society

References

[1]Beidar, K. I., Brešar, M. and Chebotar, M. A., ‘Jordan superhomomorphism’, Comm. Algebra 31 (2003), 633644.CrossRefGoogle Scholar
[2]Beidar, K. I., Chen, T.-S., Fong, Y. and Ke, W.-F., ‘On graded polynomial identities with an antiautomorphism’, J. Algebra 256 (2002), 542555.CrossRefGoogle Scholar
[3]Beidar, K. I., Martindale 3rd, W. S. and Mikhalev, A. V., Rings with Generalized Identities (Marcel Dekker, New York, 1996).Google Scholar
[4]Brešar, M., ‘On skew-commuting mappings of rings’, Bull. Austral. Math. Soc. 47 (1993), 291296.CrossRefGoogle Scholar
[5]Brešar, M., ‘On generalized biderivations and related maps’, J. Algebra 172 (1995), 764786.CrossRefGoogle Scholar
[6]Brešar, M., Martindale, W. S. and Miers, C. R., ‘Centralizing maps in prime rings with involution’, J. Algebra 161 (1993), 342357.CrossRefGoogle Scholar
[7]Chen, T.-S., ‘Supercentralizing superderivations on prime sueralgebras’, Comm. Algebra 33 (2005), 44574466.CrossRefGoogle Scholar
[8]Chung, L. O. and Luh, J., ‘On semicommuting automorphisms of rings’, Canad. Math. Bull. 21 (1987), 1316.CrossRefGoogle Scholar
[9]Fošner, M., ‘Jordan superderivation’, Comm. Algebra 31 (2003), 45334543.CrossRefGoogle Scholar
[10]Fošner, M., ‘On the extended centroid of prime associative superalgebras with applications to superderivations’, Comm. Algebra 32 (2004), 689705.CrossRefGoogle Scholar
[11]Fošner, M., ‘Jordan ε-homomorphisms and Jordan ε-derivations’, Taiwanese J. Math. 9 (2005), 595616.CrossRefGoogle Scholar
[12]Hirano, Y, Kaya, A. and Tominaga, H., ‘On a theorem of Mayne’, J. Okayama Univ. 25 (1983), 125132.Google Scholar
[13]Kaya, A., ‘A theorem on semi-centralizing derivations of prime rings’, J. Okayama Univ. 27 (1985), 1112.Google Scholar
[14]Kaya, A. and Koc, C., ‘Semicentralizing automorphisms of prime rings’, Acta Math. Acad. Sci. Hunger. 38 (1981), 5355.CrossRefGoogle Scholar
[15]Kelarev, A. V., Ring Constructions and Applications (World Scientific, River Edge, NJ, 2002).Google Scholar
[16]Montaner, F., ‘On the Lie structure of associative superalgebras’, Comm. Algebra 26 (1998), 23372349.Google Scholar
[17]Wang, Y., ‘Supercentralizing automorphisms on prime superalgebras’, Taiwanese J. Math. to appear.Google Scholar