Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T19:02:36.366Z Has data issue: false hasContentIssue false

On rings with trivial torsion parts

Published online by Cambridge University Press:  17 April 2009

L. Bican
Affiliation:
Matematicko-fyzikální fakulta, Karlova universita, Sokolovská, Praha, Czechoslovakia.
P. Jambor
Affiliation:
Matematicko-fyzikální fakulta, Karlova universita, Sokolovská, Praha, Czechoslovakia.
T. Kepka
Affiliation:
Matematicko-fyzikální fakulta, Karlova universita, Sokolovská, Praha, Czechoslovakia.
P. Němec
Affiliation:
Matematicko-fyzikální fakulta, Karlova universita, Sokolovská, Praha, Czechoslovakia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we exhibit the necessary and sufficient conditions for a ring R to have only the trivial torsion parts with respect to any (hereditary) radical on the category of left R-modules.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Atiyah, M.F., Macdonald, I.G., Introduction to commutative algebra (Addison-Wesley, Reading, Massachusetts; London; Don Mills, Ontario; 1969).Google Scholar
[2]Bass, Hyman, “Finitistic dimension and a homological generalization of semi-primary rings”, Trans. Amer. Math. Soc. 95 (1960), 466488.CrossRefGoogle Scholar
[3]Courter, Richard, “Finite direct sums of complete matrix rings over perfect completely primary rings”, Canad. J. Math. 21 (1969), 430446.Google Scholar
[4]Dickson, Spencer E., “A torsion theory for abelian categories”, Trans. Amer. Math. Soc. 121 (1966), 223235.CrossRefGoogle Scholar
[5]Dlab, Vlastimil, “Distinguished sets of ideals of a ring”, Czechoslovak Math. J. 18 (93) (1968), 560567.Google Scholar
[6]Dlab, Vlastimil, “On a class of perfect rings”, Canad. J. Math. 22 (1970), 822826.CrossRefGoogle Scholar
[7]Gardner, B.J., “Rings whose modules form few torsion classes”, Bull. Austral. Math. Soc. 4 (1971 ), 355359.CrossRefGoogle Scholar
[8]Jaegermann, Michal and Krempa, Jan, “Rings in which ideals are annihilators”, Fund. Math. 76 (1972), 95107.Google Scholar
[9] А.П. Мишина, Л.А. Скорняков, [Mišina, A.P., Skornjakov, L.A.], Абелевыгруппы и модули [Abelian groupe and modules] (Izdat. “Nauka”, Moscow, 1969).Google Scholar