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On rings with trivial torsion parts

L. Bican, P. Jambor, T. Kepka, P. Némec

In this paper, we exhibit the necessary and sufficient
conditions for a ring AR to have only the triviel torsion parts
with respect to any (hereditary) radical on the category of left
R-modules.

0. Introduction

Let R be a ring with identity and r be a (hereditary) radical on
the category Rmod of the left R-modules, that is, »r 1is an idempotent

subfunctor of identity such that r(M/r(M)) = 0 for every M € ghod (in

addition, r is left exact). In investigations of radical structure on
modules, we often need the condition r{(R) = 0 . So it is natural and of
interest to study rings having this property for all non-trivial radicals.
We shall say that R is a left R-ring (7-ring) if r(R) = 0 for every
non-trivial (hereditary) radical r on grod .

In this paper, we exhibit the necessary and sufficient conditions for
a ring to be either an R-ring or a T-ring, supplied with interesting
counterexamples. The main result of Section 2 is: R is an R-ring

(7-ring) iff R is an R-ring (T-ring) for every n =1 . Section 3

applies the ideas of Gardner's work [7] to an extent of a structural
investigation of T and R-rings with non-zero socles. Throughout this
paper, unless otherwise specified, R stands for a ring with identity and
either T or R-rings are considered as the left T or R-rings. Let us

recall ([4]) that the existence of a radical r on gRod  is equivalent to

the existence of a torsion theory (M, L) where
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M= {¥¢€ moa | r(¥) = M} =L = {4 € pmod | homp(M, L) = 0, VL € L}
and 4
L={M€Rmod|r(M)=0}=M‘={L€Rmod|homR(M,L)=0,VM€M}.

In particular ([9]), in the case of a hereditary radical it is equivalent
to the existence of a radicel filter E € I(R) , where I(R) is the set of
left ideals of R ; that is,
(1) if I €E then (I:a)={x €R | 2a €I} €E for
every a € R ;
(ii) IT € U(R), J €E ,and (I : a) €E for every a € J
imply that I € E .

It is essential to know that if E 1is a radical filter then the corres-

ponding radical r is definedby »(M) = {m €M | (0 : m) € E} for every
M € pmod and I €E ifr r(R/I) = R/T ({9]). It is easy to see that our
definition of a radical filter is equivalent to that of [9]. Note that if

r is a radical on gmod  then r(R) 1is a two-sided ideal since r is a

subfunctor of identity and the right multiplication on R is a left
R-homomorphism. It should be remarked that, obviously, simple rings are

R-rings and integral domains are T-rings.
We shall frequently use the following notation:
MC R is right T-nilpotent if V(al, ayy ... € ¥ 3(n=z1)

a, =0 ;

such that anan-l e @y H

R is a commutative primary ring if the prime radical is a prime
ideal;

I € 1(R) is an essential ideal it I #0 and I nJ # 0 for
every J € U{R) , J #0 ;

RR = {M € gmod | () =0 or r(M) =M for every radical »

on Rmod },
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TR = {M ¢ gRod | (M) =0 or r(M) =M for every hereditary

radical r on Rmod};

C(R) - the center of R ;

M - the injective hull of M € Rmod 5

R(+) - the underlying abelian group of R ;

J(R) - Jacobson radical of R ;

Rn - direct product of n copies of R ;

Rn - the full ring of matrices of degree n over R .

The scalar matrix corresponding to an element x € R is the diagonal
matrix with all the elements on the diagonal equal to x .
. . Th h
For simplicity, by M € TR or T, or FR or FR we mean that M

is a torsion class, hereditary torsion class, torsion-free class and

hereditary torsion-free class respectively.

1. On T and R-rings
THEOREM 1.1. et R be a ring and MC R be a subset. Then
Ey=1{I € UR) | ¥(ays ap, - €M)V(s € R z1)(aa, ; ... as € I]}
i8 a radical filter and
(1) if M is a left ideal then EM 18 contained in the
least radical filter containing M ,
(i1) if M 1is a two-sided ideal then EM 18 the least radical
filter containing M-,

(i) ) = 1(R) iff M 1is right T-nilpotent.

Proof. Let I € EM , t €R and suppose that Ays ps -e- € M and
g8 € R . Then there is 7n =2 1 such that aa, § - alst € I , that is, .

: I: . i
aa, 1 a;s € (I : t) and consequently ( t) € EM If K is a

left ideal such that for every k € I , (K : k) € EM , then there is
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n =2 1 such that aa, 1 .- a;8=u €I and (K : u) € EM . Hence, there

a8 €K .

i >
is m 2 1 such that an+m an+1an cee g

(Z) Let K € EM\C where ( is the least radical filter containing

M . By the definition of radical filter there is a. € M such that

1
(x - al) f C and consequently there is a sequence a, a,, € M such
that [(([K : al) : a2] N an) = (k : aa i .- al) £ C for

every n =2 1 , which yields a contradiction with the definition of EM .
(i) If M is a two-sided ideal then obviously M € EM .
(1i1) It is easy to show that EM = I(R) iff O ¢ EM .
COROLLARY 1.2. If R is a commutative ring, I is an ideal in R
and E; = {x € 1(R) | K< I and I/K is T-nilpotent in R/K} , then
E; = 7 € 1R) | 3(k € E})(k c J)} ie the least radical filter containing
I .

THEOREM 1.3. Let R be aring. If (0 : a) is right T-nilpotent
forevery a €R, a# 0 then R is a T-ring. Conversely, if R 1is a
T-ring then (0 : Ra) ie right T-nilpotent for every a € R, a # 0.

Proof. The sufficient condition follows right from Theorem 1.1. For

the necessary condition, since (0 : Ra) is a two-sided ideal, E(O-Ra)

is the least radical filter conteining (0 : Ra) by Theorem 1.1 (Zz). If

a#0 then (0 ;s Ra) < (0 : a) € E(O:Ra) = Z(R) , since R is a P-ring;

and Theorem 1.1 (7iZ1) finishes the proof.

COROLLARY 1.4. Let R be a commutative ring. Then R is a T-ring
iff (0 : a) is T-nilpotent for every a €R, a# 0 .

COROLLARY 1.5. Every commutative T-ring is primary.

PROPOSITION 1.6. Let R be a T-ring and e € R be a central

idempotent. Then e =0 or e=1.
Proof. Put X = eR . Then K2 =X and K is a two-sided ideal. If

(0 : e} =0 then, obviously, e=1 . Suppose that a € (0 : e) ,
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a#0. Then K< (0 : a) ¢ E where E = {I € I(R) | K< I} is a radical
filter containing X (it needs just a tedious checking of the radical
filter's properties). Since R is a T-ring, 0 € E and consequently
K=0.

REMARK 1.7. (i) By Proposition 1.6, no direct product of 2 rings
is a T-ring and consequently T-rings are not closed under quotient rings

(for example, consider the ring of integers).

(ii) By Corollary 1.4, the commutative 7T-rings are closed under the
subrings containing the identity. On the other hand, generally it is not
so in the non-commutative case. For, consider the full matrix ring of
degree n > 1 over a field. It is an R-ring which contains an idempotent
e different from zero and identity and the subring generated by e and 1

is not a T-ring.

PROPOSITION 1.8. Let R be a T-ring, O #a € C(R) and
(0:a) #0 . Then

() <if 0#M€Rmod then there is m € M, m# 0, such
that a € (0 : m) ,
(i2) (0 : a) is an essential left ideal of R ,
(iii) (0 : a) is right T-nilpotent,
(iv) a is nilpotent.

Proof. (%) Consider Ma = {M ¢ god | meM, m# 0= an# 0}, . Then

Ma € F; . For, it is sufficient to show that Ma is closed under the
injective hulls. Let ¥ € M, . Since a € C(R) , D= {m¢ M| an= 0}

is a submodule of ¥ and DNM=0 . Hence D=0 . Now, by the
hypothesis R Ma and since R is a T-ring, Ma =0 .
The rest is an easy consequence of (%) and Theorem 1.3.

COROLLARY 1.9. et R be a T-ring. Then R(+) 4is either torsion-

free or a p-grouwp, for some prime p .

PROPOSITION 1.10. Let R be a ring. Then the following are

equivalent:

https://doi.org/10.1017/5S0004972700043173 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043173

280 L. Bican, P. Jambor, T. Kepka, P. Némec

(1) R 18 an R-ring;
(i) if A, B € gmod and homR(A, B) = 0, then either B = 0
or homR(A, R) =0 ;

(iii1) for every non-zero left ideal I and every non-zero
M € pmod , homR(I, M) #£0 ;

(iv) for every non-trivial left ideal I , h°mR(I’ R/I) # 0,

(v) for every non-trivial two-sided ideal I ,
homR(I, R/I) #0 .
Proof. (i) = (ii) = (iii) = (iv) = (v) is obvious.
(v) = (i). If r is a radical on grod  then r(R) is a two-sided

ideal and homy(r(R), R/r(R)) = 0 . Hence r(R) =0 or r(R) =R .

PROPOSITION 1.11. Let R be a ring. Then

(i) if R 1is an R-ring then for every non-zero left ideal I
and every simple module M there is a left ideal K such
that K I and I/K=M,

(i1) 1if for every non-trivial two-sided ideal I , I is
projective and there is a left ideal S such that I < S
and homR(I, R/S) # 0, then R is an R-ring.

Proof. (Z) It follows straight from Proposition 1.10 (Zi<).

(iZ) We shall prove condition 1.10 (v). Let I be a non-trivial

two-sided ideal. Then we have the exact sequence
homR(I, R/I) » homR(I, R/S) - extR(I, S/I)=0.
Since homR(I, R/S) # 0 , homR(I, R/I) # 0 .

PROPOSITION 1.12. Let R be an R-ring and I a left ideal such
that IR # R . Then for every left ideal K, IK=K=K=0.
Proof. Put AI = {M ¢ good | IM = M} . It is easy work to show that

AI € TR . Let K be a non-zero left ideal and suppose that X € AI .
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Then R € AI as well, since R is an R-ring, and it yields a
contradiction.

PROPOSITION 1.13. Let R be a ring such that for every non-trivial
two-sided ideal I , 18 #I . If M is a projective module and
r(M) = M, for some non-trivial radical r , then M= 0 .

Proof. Let M # 0 be projective and r(M) = M for some non-trivial
radical r . Consider the least torsion class M containing M . Since
M is projective, the corresponding torsion-free class M%* is a hereditary
torsion class which is closed under the direct products, which implies that
the corresponding radical filter E is closed under intersections, and

consequently N I =X is an idempotent two-sided ideal. Hence XK = 0
TeE

or K =R , a contradiction.

COROLLARY 1.14. Let R be a ring. If every non-trivial two-sided
ideal is projective and not idempotent then R <is an R-ring.

EXAMPLE 1.15. Let G be a subgroup of the additive group of real

numbers.such that there exists a sequence {ai} 1 < ¢n (0, 1) satisfying

1=
o
z a; <1 . Consider the vector space V over a field F having the
1=1

basis A =G n {0, 1) . We shall define a binary operation * on

Avu {6} s Where 0 is the zero element of V , by the following manner:
if a, b, atb € A then a*b=a +b , a*b=0 otherwise. We can
easily extend the operation #* onto the whole V and we get an

F-algebra. The following statements are valid:
(i) (0 : @) is nilpotent for every a €V , a #0 ;
(ii) V is a commutative primary ring;
(iii) Vv is a T-ring;
(iv) the prime radical P of V is not T-nilpotent and P2 =P ;
(v) V is not an R-ring (see Proposition 1.12).

Moreover, it is possible to choose A being countable. This example is

based on the ideas of [§].
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EXAMPLE 1.16. Consider S =2 X Q , where Z is the additive group
of integers and & the additive group of rational numbers. Define the

following binary operation on S :
(205 93) * (2ps 9p) = (2125, 2,95%2,9))

Then S becomes a commutative primary ring with prime radical nilpotent of
degree 2 . Hence S is a T-ring which is not an R-ring (see

Proposition 1.11). This example is based on the ideas of [5].

2. Full matrix rings over T and R-rings
DEFINITION 2.1. Let R be a ring, M € jmod and N be a submodule

in M . We shall say that N satisfies the condition (T) in M if
O#N # M and there exist x €8, y € MW such that (0 : ) < (¥ : y).

PROPOSITION 2.2. Let R be a ring, M ¢ guod and N be a sub-
module in M . Then the following are equivalent:
() ihere 18 a hereditary radical r on geod such that
r(M) =N ;
(ii) N does not satisfy (T) in M.

Proof. (i) = (ii). Suppose that 0 # N # ¥ and VN satisfies (T)
in M , that is, there is x € N and y € M\W such that
(0: x)c(VN:y). Themap f : Rx *M/N , ax+> ay+N 1is a well-defined
homomorphism and it yields a contradiction, since »r(Rx) = Rx and

r(M/N) =0 .

(i2) = (1). Without loss of generality we can assume that
O #N # M . Consider the least hereditary torsion class M containing W
and r be the corresponding hereditary radical. Obviously N € r{M) . If
N # r(M) then there is a submodule K S N and a non-zero homomorphism
f: K> r(M)/N . Hence there are k € X and y € r(M)\W such that
f(k) =y + N and consequently (0 : k) < (¥ : y) , a contradiction.

COROLLARY 2.3. Let R bea ring and M € ool - Then the following
are equivalent:

(i) MeTR;
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(i1) every non-trivial submodule of M satisfies (T)
THEOREM 2.4. Let R be a ring. Then the following are equivalent:
(i) R is a T-ring;
(1i) every non-trivial left ideal satisfies (T) in R ;
(i11) every non-trivial two-sided ideal satisfies (T) in R .
Proof. (7) = (ii) by Corollary 2.3.
(iZ) = (1ii) obvious.
(ii1) = (i) by Proposition 2.2, considering the fact that any torsion
part of R is a two-sided ideal.
THEOREM 2.5. Let R be a ring. Then
(Z7) if R 1is a T-ring, then for every n =1, the full
matrix ring R, is a T-ring,
(iZ) if there is n =1 such that R, is a T-ring then R
is a T-ring.
Proof. (i) Let KX %be a non-trivial two-sided ideal in R . Itis

easy to see that there is a non-trivial two-sided ideal I in R such
that X = In , that is, K is a full matrix ring (possibly without

identity) over I . According to Theorem 2.4 (ZiZ), there are x € I and
y € RAI such that (0 : x)< (I :y) . If X,Y €R_ are the

corresponding scalar matrices then obviously X € K , Y € Rn\K and
(0: X)c (K :Y). Nowit suffices to use Theorem 2.4 (7i%).

(Z1) Let Rn be s T-ring, for some »n = 1 . There is a bijection
f between left ideals of Rn and R-submodules of R° given by

I+ f(I), f(I) is a submodule in e consisting of all the rows of
matrices from I . If M 1is a non-trivial submodule of Rn then there

are matrices A, B such that 4 € f_l(M) , B¢ Rn\f_l(M) and

(0 : 4) c (f_l(M) : B) (see Theorem 2.4 (ii)). Since B € Rn\f_l(M) ,
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there is 1 <7 =n such that the 7-th row of B does not lie in M .

Put C € Rn as follows: C = (ckl) s C;; =1 and Cr1 = 0 othervise.

Since (0 : 4) ¢ (f-l(M) : B) , we get

(L) : cB)

Let x be the i-th row of CA and y be the <-th row of (B .

(0:ca)=((0:4):¢)c ((F*m) : B) : ¢)

Obviously x €M and y € F*\M . Consider a € (0 : z) and denote vy D
the corresponding scalar matrix. Then DCA = 0 , hence DCB € f-l(M) and
consequently ay € M . Now, by Corollary 2.3, Rn € TR and since TR is
closed under submodules, R € TR .

PROPOSITION 2.6. Let R be a ring and N be a submodule of an
R-module M . Then the following are equivalent:

(i) there is a radical r on grod such that r(M) =N ;
(1) homR(IV, M/N) =0 .

Proof. (Z) = (i) is obvious.

(iZ) = (7). Let A be the least torsion-free class containing M/N
and r be the corresponding radical. Obviously N Er(M) . On the other
hand, hom(r(M)/N, M/N) = 0 implies that r(M)C ¥ .

COROLLARY 2.7. Let M be an R-module. Then the following are

equivalent:

(i) MERR,

(i2) if N 1is a non-trivial submodule of M then
hom, (¥, M/N) # O .

THEOREM 2.8. Let R be a ring. Then

(z) if R 18 an R-ring then for every n =1, the full

matriz ring R, i8 an R-ring,

(i) if there is n 21 such that R, i8 an R-ring then R

i8 an R-ring.
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Proof. (i) Let K be a two-sided ideal in R . Then there is a
two-sided ideal I C R such thet X = In , that is, KX is the full matrix
ring (possibly without identity) over I and if S = R/I then Rn/]{ =S,
as R -modules. Suppose that 0 # K # B, then 0 # I # R and there is a
non-zero f € homR(I, R/I) . Hence we can make f into

fe homRn & &,/k) vy F(la;;)) = (fla;;)) and F#0, so that, vith

respect to Proposition 1.10 (v), R, is an R-ring.

(ii) Let M be a non-trivial R-submodule of K° and I be the
corresponding left ideal in Rn . By Proposition 1.10 (Zv), there is a

non-zero f € hom [I, Rn/I) and consequently there is A4 = (a

) oer
R, N

1J
such that f((aij]] = (bij) + I I . Without loss of generality we can

assume that the first row of (bij] does not lie in M . Hence we can

meke f into non-zero ? € homR(M, Rn/M] by f(m) = (clg) + M., vwhere

and an application of Corollary 2.7 shows that -4 RR .

PROPOSITION 2.9. Let R be such a T-ring that every two-sided
ideal I 18 in the form I = aR = Ra , for some a € R . Then R 1is an
R-ring.

Proof. Suppose that I is & non-trivial two-sided ideal. Then by
Theorem 2.4 (ii{) there is x € I and y € R\I such that
(0 :2)c (I :y) and since I =aR , x =ab for some b € R . Hence
(0 : a) < (0 : x) and there is a non-zero f € homR(I, R/I) such that

flda) = dy + I ; that is, by Proposition 1.10 (v), the proof is finished.

REMARK 2.10. The authors do not know whether, in general, the
polynomial rings over T-rings are T-rings. However, the following is
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true.

PROPOSITION 2.11. Let R be a commtative T-ring with nilpotent

prime radical P(R) . Then Rlz] is a T-ring.

Proof. Denote by n the degree of nilpotency of P(R) . Let
g € Rz} with (0 :g) #0 and h € (0 : g) . It is well known that the
coefficients of h are zero divisors in R (see, for example, (1],
Chapter 1, exercise 2), and therefore they lie in P(R) . Now it is easy
to see that (0 : g) is nilpotent of degree n and Theorem 1.3 finishes

-the proof.

3. On T and R-rings with non-zero socles
THEOREM 3.71. The following conditions for a ring R are equivalent:
(i) R 18 a left T-ring with non-zero left socle;

(ii1) all simple left R-modules are isomorphic and all non-

zero left R-modules have non-zero socles;

(iii) good has only two hereditary torsion theories;

(iv) R is igomorphic to a full matriz ring over a local ring
having left socle sequence;

(v) J(R) 1is right T-nilpotent and R/J(R) 1is a simple semi-

simple artinian ring.

Proof. (Z) = (ii) Let I be a minimal left ideal in R . By (%),
R lies in the least torsion class containing I . Therefore

homR(I, M) # 0 for every non-zero left R-module M and (7Z) easily
follows.

(ii) = (i2Z). See [7], Proposition 2.

(i) = (i). Obvious.

(iiz) = (iv). See [6], Theorem 1.

(iii) = (v). See [7], Theorems 4 and 6.

THEOREM 3.2. Let R be a ring. Then the following are equivalent:

(i) R 1is a left R-ring with non-zero left socle and J(R)
is left T-nilpotent;
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(') R s a right R-ring with non-zero right socle and J(R)
is right T-nilpotent;

(i) grod has only two torsion theories;

(z2') modR has only two torsion theories;

(iii) J(R) is left and r*zight T-nilpotent and R/J(R) is a
simple semisimple artinian ring;

(iv) R <s left and right perfect and has only one simple
module up to isomorphism;

(v) R 1is isomorphic to a full matrix ring over a left and
right perfect local ring.

Proof. It clearly suffices to prove the equivalence of the left-hand

forms, since condition (7Z%) is self-dual.
(i) = (i1). It follows from Theorem 3.1 (v) and [7], Theorem 3.
(i2) = (iii). See [7], Theorems 3 and 6.
(i11) = (iv). See [2], Theorem P, (1) <= (2).
(iii) = (v). See [3], the main theorem, (1A) <= (1F).

REMARK 3.3. These conditions are equivalent to many others; see, for
example, [3], [6].

COROLLARY 3.4. Let R be a commutative ring with non-zero socle.
Then R 18 a T-ring iff it ie an R-ring.

PROPOSITION 3.5. Let R be a T-ring with nom-zero socle. Then the
following are equivalent:

() R is an R-ring;
(i1) all submodules of projective modules contain maximal
submodules ;

(1i1) all left ideals contain maximal submodules.

Proof. (Z) = (iZ). Let A be the least torsion-free class
containing all simple R-modules. Obviously R € A and hence every sub-
module of a projective module has a simple epimorphic image. Thus it

contains a maximal submodule.
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(i1) = (ii1) is trivial.
(iZ1) = (Z). By Theorem 3.1 (Zi1), every non-zero left R-module has a
simple submodule unique up to isomorphism, so that (ZiZ) gives

homR(I, M) # 0 for every non-zero left ideal I and every non-zero left

R-module M . Now it suffices to use Propositién 1.10 (ii).

4. MWeakly dense submodules
Let R be a ring and M € Fod . Then E(M) will be the set

consisting of the zero submodule and of all essential submodules of M .
Further we shall denote by MM the least hereditary torsion class

containing M and by rM the corresponding radical.

DEFINITION 4.1. Let R %Ye a ring and M € grod . A submodule

N S M is called weakly dense in M if there are X € E(M) and m € M\X
such that for every n € M and a €R\(K : m) , (W : n) & (K : am) .

PROPOSITION 4.2. [et M € guod and N C M be a swmodule. Then N

i8 weakly dense in M <iff there are K € E(M) and m € M\K such that
homR(B/IV, R(mk)) = 0 for every submodule B, NCBCM.

Proof. (i) Let N ©be weskly dense in M and X , m be as in
Definition 4.1. Let f : B/N + R(m+K) be a non-zero homomorphism. There
is b € B such that f(b+N) =am+ K # K . Hence a € R\(K : m) and

(N : b) < (K : an) , a contradiction.

(ii) If N is not weakly dense in M then for every K € E(M) and
m € M\K there are n €M, a € R\(KX : m) such that (¥ : n) € (X : am) .
Hence f : (N+Rn)/N + R(m+K) given by an + N+ zam + K , is a non-zero

homomorphism.

PROPOSITION 4.3. Let M € pmod and NS M be a submodule. If N
18 not weakly dense in M then M € MM/IV .

Proof. let m € M be a non-zero element. As N is not weakly dense
in M, there is B, NS BC M, such that homR(B/IV, Rn) # 0 . Hence

rM/”(Rm) #0 , so that Rm n rM/N(M) # 0 . Therefore K = Ty (M) € E(M) .
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Now, from Proposition 4.2, we have X = M .
DEFINITION 4.4. Let M ¢ gRod and N C M be a submodule. Then ¥

is called dense in M if r, (M) = 0 , that is, if homR(B/IV, M) = 0 for

/N
all B, NCBCM.

PROPOSITION 4.5. Let M € mod and N S M be a submodule. Then N
is dense in M iff (W :n)d(0:m) forall myneM, m#£0.

Proof. This is an immediate consequence of Definition L.L.

PROPOSITION 4.6. Let M € god . If M €T, then every weakly
dense submodule in M is dense in M .

Proof. It follows from Proposition 4.3 and Definition U.L.

THEOREM 4.7. Let R be a ring. Then the following are equivalent:

(i) R is a T-ring;

(i1) every weakly dense left ideal of R 1ig demse in R .

Proof. (i) = (ii). See Proposition L.6.

(ii) = (i). let r be a hereditary radical and E the corresponding
radical filter. If E contains only dense left ideals then »{(R) =0 .
Let I €E, I be not dense in R . Then I is not weakly dense in R

and hence rR/I(R) = R by Proposition 4.3. However »(R/I) = R/I and
therefore rR/I(M) c r(M) for every M € Fod . Thus r(R) = R .

References

(1] M.F. Atiyah, 1.G. Macdonald, Introduction to commutative algebra
(Addison-Wesley, Reading, Massachussetts; London; Don Mills,
Ontario; 1969).

[2] Hyman Bass, "Finitistic dimension and a homologlical generalization of
semi-primary rings", Trans. Amer. Math. Soc. 95 (1960), 466-488.

[3] Richard Courter, "Finite direct sums of complete matrix rings over
perfect completely primary rings", Canad. J. Math. 21 (1969),
430-LL6.

https://doi.org/10.1017/5S0004972700043173 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043173

290 L. Blcan, P. Jambor, T. Kepka, P. Nemec

[4] Spencer E. Dickson, "A torsion theory for abelian categories", Trams.
Amer. Math. Soc. 121 (1966), 223-235.

(5] Vliastimil Dlab, "Distinguished sets of ideals of a ring", Czechoslovak
Math. J. 18 (93) (1968), 560-567.

[6] Vlastimii Dlab, "On a class of perfect rings", Canad. J. Math. 22
(1970), 822-826.

[7]) B.J. Gardner, "Rings whose modules form few torsion classes", Bull.
Austral. Math. Soe. 4 (1971), 355-359.

{81 Michal Jaegermann and Jan Krempa, "Rings in which ideals are
annihilators", Fund. Math. 76 (1972), 95-107.

(91 A.N. Fivwmna, N.A. Cuopuakos, [A.P. Mi¥ina, L.A. Skornjakov], AGeresw
rpynre 1 rogynu {Abelian groupe and modules) (Izdat. "Nauka",
Moscow, 1969).

Matematicko-fyzikaini fakulta,
Karlova universita,
Sokolovska,

Praha,

Czechoslovakia.

https://doi.org/10.1017/5S0004972700043173 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043173

