Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T05:56:11.346Z Has data issue: false hasContentIssue false

On Lagrange interpolation with equidistant nodes

Published online by Cambridge University Press:  17 April 2009

Graeme J. Byrne
Affiliation:
Department of Mathematics, Bendigo College of Advanced Education, PO Box 199 Bendigo Vic 3550, Australia
T.M. Mills
Affiliation:
Department of Mathematics, Bendigo College of Advanced Education, PO Box 199 Bendigo Vic 3550, Australia
Simon J. Smith
Affiliation:
Department of Mathematics, Bendigo College of Advanced Education, PO Box 199 Bendigo Vic 3550, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A quantitative version of a classical result of S.N. Bernstein concerning the divergence of Lagrange interpolation polynomials based on equidistant nodes is presented. The proof is motivated by the results of numerical computations.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Berman, D.L., ‘Divergence of the Hermite-Fejér interpolation process’, (in Russian), Uspehi Mat. Nauk. 13 (1958), 143148.Google Scholar
[2]Bernstein, Serge, ‘Quelques remarques sur l'interpolation’, Math. Ann. 79 (1918), 112.CrossRefGoogle Scholar
[3]Luke, Yudell L., The special functions and their approximations, Vol. I (Academic Press, New York, 1969).Google Scholar
[4]Natanson, I.P., Constructive function theory, Vol. III (Frederick Ungar, New York, 1965).Google Scholar
[5]Runck, Paul Otto, ‘Über Konvergenzfragen bei Polynominterpolation mit äquidistanten Knoten I.’, J. Reine Angew. Math. 208 (1961), 5169.CrossRefGoogle Scholar
[6]Runck, Paul Otto, ‘Über Konvergenzfragen bei Polynominterpolation mit äquidistanten Knoten II.’, J. Reine Angew. Math. 210 (1962), 175204.CrossRefGoogle Scholar
[7]Whittaker, E.T. and Watson, G.N., A course of modern analysis, Fourth edition (Cambridge Univ. Press, London, 1973).Google Scholar