Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T02:58:04.007Z Has data issue: false hasContentIssue false

On generalised Möbius inversion formulas

Published online by Cambridge University Press:  17 April 2009

Tian-Xiao He
Affiliation:
Department of Mathematics and Computer Science, Illinois Wesleyan University, Bloomington, IL 61702–2900, United States of America
Leetsch C. Hsu
Affiliation:
Department of Mathematical Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154–4020, United States of America
Peter J.S. Shiue
Affiliation:
Department of Mathematics, Dalian University of Technology, Dalian 116024, People's Republic of China
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We provide a wide class of Möbius inversion formulas in terms of the generalised Möbius functions and their application to the setting of the Selberg multiplicative functions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

Referenes

[1]Brown, T.C., Hsu, L.C., Wang, J. and Shiue, P.J.S., ‘On a certain kind of generalized number-theoretical Möbius function’, Math. Sci. 25 (2000), 7277.Google Scholar
[2]Bundschuh, P., Hsu, L.C. and Shiue, P.J.S., ‘Generalized Möbius inversion- theoretical and computational aspects’, (manuscript) (2003).Google Scholar
[3]Chen, N.-X., ‘Modified Möbius inversion formula and its application to physics’, Phys. Rev. Lett. 64 (1990), 11931195.CrossRefGoogle Scholar
[4]Fleck, A., ‘Über gewisse allgemeine zahlentheoretische Funktionen, insbesondere eine der Funktion μ(n) verwandte Funktion μk(m)’, S.-B. Berlin. Math. Ges 15 (1916), 38.Google Scholar
[5]Hardy, G.H. and Wright, E.M., An Introduction to the Theory of Numbers, (fifth edition) (Oxford University Press, New York, 1979).Google Scholar
[6]Knopfmacher, J., Abstract analytic number theory (North-Holland Publishing Co., Amsterdam, 1975).Google Scholar
[7]Sándor, J. and Bege, A., ‘The Möbius function: generalizations and extensions’, Adv. Stud. Contemp. Math. (Kyungshang) 6 (2003), 77128.Google Scholar
[8]Selberg, A., ‘Remarks on multiplicative functions in: Number theory day’,(Proc. Conf., Rockfeller Univ.,New York), Lecture Notes in Mathematics 626 (Springer-Verlag, Berlin), pp. 232241.Google Scholar
[9]Wilf, H.S., Generatingfunctionology (Academic Press, New York, 1990).Google Scholar