1 Introduction
1.1 Related work and motivations
Let p be an odd prime and let
$(\frac {\cdot }{p})$
be the Legendre symbol. Chapman [Reference Chapman1, Reference Chapman2] investigated determinants involving Legendre matrices
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu2.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu3.png?pub-status=live)
Surprisingly, these determinants are closely related to quadratic fields. In fact, letting
$\varepsilon _p>1$
and
$h(p)$
be the fundamental unit and the class number of
$\mathbb {Q}(\sqrt {p})$
, and writing
$\varepsilon _p=a_p+b_p\sqrt {p}$
with
$a_b,b_p\in \mathbb {Q}$
, Chapman [Reference Chapman1] proved that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu4.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu5.png?pub-status=live)
Later, Chapman [Reference Chapman2] posed the following conjecture.
Conjecture 1.1 (Chapman).
Let p be an odd prime and write
$\varepsilon _p^{(2-(2/p))h(p)}= a_p^{\prime } +b_p^{\prime }\sqrt {p}$
with
$a_p^{\prime },b_p^{\prime }\in \mathbb {Q}$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu6.png?pub-status=live)
Due to the difficulty of the conjecture, Chapman called this determinant ‘the evil determinant’. In 2012 and 2013, Vsemirnov [Reference Vsemirnov9, Reference Vsemirnov10] confirmed the conjecture (the case
$p\equiv 3\pmod 4$
in [Reference Vsemirnov9] and the case
$p\equiv 1\pmod 4$
in [Reference Vsemirnov10]).
In 2019, Sun [Reference Sun8] studied some variants of Chapman’s determinants. For example, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu7.png?pub-status=live)
Sun [Reference Sun8, Theorem 1.2] showed that
$S(d,p)=0$
whenever
$(d/p)=-1$
and that
$(-S(d,p)/p)=1$
whenever
$(d/p)=1$
. (See [Reference Krachun, Petrov, Sun and Vsemirnov3, Reference Li and Wei5, Reference Wu11, Reference Wu, She and Wang13] for recent progress on this topic.) Also, Sun [Reference Sun8, Theorem 1.4] proved that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn1.png?pub-status=live)
and that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu8.png?pub-status=live)
whenever
$p\equiv 3\pmod 4$
. In 2022, the third author and Wang [Reference Wu and Wang14, Theorem 1.7] considered the determinant
$\det [1/(\alpha _i+\alpha _j)]_{1\le i,j\le (p-1)/k}$
, where
$0<\alpha _1,\ldots ,\alpha _{(p-1)/k}<p$
are all the kth power residues modulo p and showed that for any positive even integer k such that
$k\mid p-1$
, if
$-1$
is not a kth power modulo p, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu9.png?pub-status=live)
where
$m=(p-1)/k$
.
Now let
$\mathbb {F}_q$
be the finite field of q elements with
$\mathrm {char}(\mathbb {F}_q)=p>2$
. It is known that
$\mathbb {F}_q^{\times }=\mathbb {F}_q\setminus \{0\}$
is a cyclic group of order
$q-1$
and that the subgroups
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu10.png?pub-status=live)
are exactly all subgroups of
$\mathbb {F}_q^{\times }$
. Let
$\phi $
be the unique quadratic character of
$\mathbb {F}_q$
, that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu11.png?pub-status=live)
As
$\mathrm {char}(\mathbb {F}_q)>2$
, the subset
$\{\pm 1\}\subseteq \mathbb {Z}$
can be viewed as a subset of
$\mathbb {F}_q$
. From now on, we always assume
$\pm 1\in \mathbb {F}_q$
. Inspired by Sun’s determinant (1.1), it is natural to consider the matrix
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu12.png?pub-status=live)
However, if
$k\mid q-1$
is even, then the denominator
$a_i+a_j=0$
for some
$i,j$
since
${-1\in U_k}$
in this case. To overcome this obstacle, note that for any
$x\in \mathbb {F}_q$
, we have
$\phi (x)=x^{(q-1)/2}$
. Hence, we first focus on the matrix
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu13.png?pub-status=live)
The main results involving
$D_k$
will be given in Section 1.2.
We now consider another type of determinant. Sun [Reference Sun8, Remark 1.3] posed the following conjecture.
Conjecture 1.2 (Sun).
Let
$p\equiv 2\pmod 3$
be an odd prime. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn2.png?pub-status=live)
is a quadratic residue modulo p.
The third author, She and Ni [Reference Wu, She and Ni12] obtained the following generalised result.
Theorem 1.3 (Wu, She and Ni).
Let
$q\equiv 2\pmod 3$
be an odd prime power. Let
$\beta _1,\ldots ,\beta _{q-1}$
be all the nonzero elements of
$\mathbb {F}_q$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu14.png?pub-status=live)
where
$p=\mathrm {char}(\mathbb {F}_q)$
.
Recently, Luo and Sun [Reference Luo and Sun6] investigated the determinant
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn3.png?pub-status=live)
For
$(c,d)=(1,1)$
or
$(2,2)$
, they determined the explicit values of
$({\det S_p(c,d)}/{p})$
.
Motivated by Sun’s determinants (1.1)–(1.3) and the above discussions, we also consider the matrix
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu15.png?pub-status=live)
We will state our results concerning
$T_k$
in Section 1.3.
1.2 The main results involving det
$\,D_k$
Theorem 1.4. Let
$\mathbb {F}_q$
be the finite field of q elements with
$\mathrm {char}(\mathbb {F}_q)=p>2$
. Then for any integer
$k\mid q-1$
with
$1<k\le q-1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu16.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu17.png?pub-status=live)
Suppose now that
$k=(q-1)/2$
, that is,
$U_{(q-1)/2}$
is the set of all the nonzero squares over
$\mathbb {F}_q$
. Then we can obtain the following simplified result which will be proved in Section 2.
Corollary 1.5. Let
$\mathbb {F}_q$
be the finite field of q elements with
$\mathrm {char}(\mathbb {F}_q)=p>2$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu18.png?pub-status=live)
where
$u,v\in \mathbb {F}_p$
are defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu19.png?pub-status=live)
In particular, if
$q=p>3$
is an odd prime, then
$D_{(p-1)/2}$
is nonsingular and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu20.png?pub-status=live)
where
$h(-p)$
is the class number of
$\mathbb {Q}(\sqrt {-p})$
.
From Theorem 1.4, we see that
$\det D_k\in \mathbb {F}_p$
. The next result gives the explicit value of
$({\det D_k}/{p})$
when k is odd.
Theorem 1.6. Let
$\mathbb {F}_q$
be the finite field of q elements with
$\mathrm {char}(\mathbb {F}_q)=p>2$
. Let
${1<k\le q-1}$
be an odd integer with
$k\mid q-1$
. Suppose that
$D_k$
is nonsingular. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu21.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu22.png?pub-status=live)
1.3 The main results involving
$\mathrm{det}\ T_k$
To state the next results, we need to introduce some basic properties of trinomial coefficients. Let n be a positive integer. For any integer r, the trinomial coefficient
$\binom {n}{r}_2$
is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu23.png?pub-status=live)
This implies that
$\binom {n}{r}_2=0$
whenever
$|r|>n$
and that
$\binom {n}{r}_2=\binom {n}{-r}_2$
for any integer r. In particular,
$\binom {n}{0}_2$
is usually called the central trinomial coefficient because
$\binom {n}{0}_2$
is exactly the coefficient of
$x^n$
in the polynomial
$(x^2+x+1)^n$
. For simplicity,
$\binom {n}{0}_2$
is also denoted by
$t_n$
.
Theorem 1.7. Let
$\mathbb {F}_q$
be the finite field of q elements with
$\mathrm {char}(\mathbb {F}_q)=p>2$
. Then for any integer
$k\mid q-1$
with
$1<k\le q-1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu24.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu25.png?pub-status=live)
As a direct consequence of Theorem 1.7, we have the following result.
Corollary 1.8. Let
$\mathbb {F}_q$
be the finite field of q elements with
$\mathrm {char}(\mathbb {F}_q)=p>2$
. For any integer
$k\mid q-1$
with
$1<k\le q-1$
, the matrix
$T_k$
is singular over
$\mathbb {F}_q$
if and only if
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu26.png?pub-status=live)
for some s with
$0\le s\le k-1$
. In particular,
$T_{q-1}$
is a singular matrix over
$\mathbb {F}_q$
.
In the case
$k=(q-1)/2$
, similar to Corollary 1.5, by Theorem 1.7, we deduce the following simplified result.
Corollary 1.9. Let
$\mathbb {F}_q$
be the finite field of q elements with
$\mathrm {char}(\mathbb {F}_q)=p>2$
.
-
(i) If
$q\equiv 1\pmod 4$ , then
$$ \begin{align*}\det T_{(q-1)/2}= \prod_{s=0}^{(q-5)/4} \bigg(\binom{(q-3)/2}{(q-3)/2-s}_2+\binom{(q-3)/2}{1+s}_2\bigg)^2.\end{align*} $$
-
(ii) If
$q\equiv 3\pmod 4$ and
$q>3$ , then
$$ \begin{align*}\det T_{(q-1)/2}= \binom{(q-3)/2}{0}_2\prod_{s=0}^{(q-7)/4} \Bigg(\binom{(q-3)/2}{(q-3)/2-s}_2+\binom{(q-3)/2}{1+s}_2\Bigg)^2.\end{align*} $$
In particular, if
$T_{(q-1)/2}$
is nonsingular, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu29.png?pub-status=live)
2 Proofs of Theorem 1.4 and Corollary 1.5
We begin with the following result (see [Reference Krattenthaler4, Lemma 10]).
Lemma 2.1. Let R be a commutative ring. Let
$P(t)=p_0+p_1t+\cdots +p_{n-1}t^{n-1}\in R[t]$
. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu30.png?pub-status=live)
We also need the following result.
Lemma 2.2. Let
$\mathbb {F}_q$
be the finite field of q elements with
$\mathrm {char}(\mathbb {F}_q)=p$
. For any positive integer
$k\mid q-1$
, if we set
$U_k=\{a_1,\ldots ,a_k\}$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu31.png?pub-status=live)
Proof. It is clear that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn4.png?pub-status=live)
Let
$S_1=\prod _{1\le i\neq j\le k}(a_j-a_i)$
and let
$S_2=\prod _{1\le i<j\le k}{1}/{(a_ia_j)}$
. We first consider
$S_1$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu32.png?pub-status=live)
and let
$G^{\prime }_k(t)$
be the formal derivative of
$G_k(t)$
. Then by the definition of
$U_k$
, we see that
$G_k(t)=t^k-1$
. Thus,
$G_k^{\prime }(t)=kt^{k-1}$
and
$\prod _{1\le j\le k}a_j=(-1)^{k+1}$
. Now we can verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn5.png?pub-status=live)
We turn to
$S_2$
. It is clear that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn6.png?pub-status=live)
Combining (2.1) with (2.2) and (2.3),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu33.png?pub-status=live)
This completes the proof.
Proof of Theorem 1.4.
As
$\mathrm {char}(\mathbb {F}_q)=p>2$
, the subset
$\{1,-1\}\subseteq \mathbb {Z}$
can be naturally viewed as a subset of
$\mathbb {F}_q$
. One can verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn7.png?pub-status=live)
The last equality follows from
$\prod _{1\le j\le k}a_j=(-1)^{k+1}$
. Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu34.png?pub-status=live)
with
$\deg (f_k)\le k-1$
. Noting that
$(a_j/a_i)^{k+s}=(a_j/a_i)^s$
for any integer s, by (2.4),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu35.png?pub-status=live)
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu36.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu37.png?pub-status=live)
This completes the proof.
Proof of Corollary 1.5.
By Theorem 1.4, if
$k=(q-1)/2$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn8.png?pub-status=live)
The last equality follows from
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu38.png?pub-status=live)
We now divide the remaining part of the proof into two cases.
Case 1:
$q\equiv 1\pmod 4$
.
In this case, we have
$\sqrt {-1}\in \mathbb {F}_q$
, where
$\sqrt {-1}$
is an element in the algebraic closure of
$\mathbb {F}_q$
such that
$(\sqrt {-1})^2=-1$
. Since
$2=-\sqrt {-1}(1+\sqrt {-1})^2,$
we have
$\phi (2)=\phi (-\sqrt {-1})$
and hence
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn9.png?pub-status=live)
Combining (2.5) with (2.6) and noting that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu39.png?pub-status=live)
we obtain
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn10.png?pub-status=live)
This proves the case
$q\equiv 1\pmod 4$
.
Case 2:
$q\equiv 3\pmod 4$
and
$q>3$
.
In this case, since
$q\equiv 3\pmod 4$
,
$(1+\sqrt {-1})^q=1+(\sqrt {-1})^q=1-\sqrt {-1}$
. This, together with
$2=-\sqrt {-1}\big (1+\sqrt {-1}\big )^2$
, implies that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn11.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn12.png?pub-status=live)
This proves the case
$q\equiv 3\pmod 4$
and
$q>3$
.
Now we assume that
$q=p$
is an odd prime. Suppose first
$p\equiv 1\pmod 4$
. Then by (2.7), we see that
$\det D_{(q-1)/2}$
is a nonzero square in
$\mathbb {F}_p$
, that is,
$({\det D_{(p-1)/2}}/{p})=1$
. In the case
$p\equiv 3\pmod 4$
and
$p>3$
, by (2.9) and
$({-2}/{p})=({-\tfrac 12}/{p})=(-1)^{(p+5)/4}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu40.png?pub-status=live)
The last equality follows from Mordell’s result [Reference Mordell7] which states that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu41.png?pub-status=live)
whenever
$p\equiv 3\pmod 4$
and
$p>3$
. This completes the proof.
3 Proof of Theorem 1.6
To prove Theorem 1.6, we first need the following well-known result.
Lemma 3.1. Let
$\mathbb {F}_q$
be the finite field of q elements and let r be a positive integer. Then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu42.png?pub-status=live)
We will see later in the proof that
$\det D_k$
has close relations with the determinant of a circulant matrix. Hence, we now introduce the definition of circulant matrices. Let R be a commutative ring. Let
$b_0,b_1,\ldots ,b_{s-1}\in R$
. We define the circulant matrix
$C(b_0,\ldots ,b_{s-1})$
to be an
$s\times s$
matrix whose (
$i,j$
)-entry is
$b_{j-i}$
where the indices are cyclic module s, that is,
$b_i=b_j$
whenever
$i\equiv j\pmod s$
. The third author [Reference Wu11, Lemma 3.4] obtained the following result.
Lemma 3.2. Let R be a commutative ring. Let s be a positive integer. Let
$b_0,b_1,\ldots ,b_{s-1}\in R$
such that
$b_i=b_{s-i}$
for
$1\leqslant i\leqslant s-1$
.
If s is even, then there exists an element
$u\in R$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu43.png?pub-status=live)
If s is odd, then there exists an element
$v\in R$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu44.png?pub-status=live)
Proof of Theorem 1.6.
As k is odd, we have
$2\mid (q-1)/k$
. For simplicity, we let
$q-1=nk=2mk$
. Since
$k\mid (q-1)/2$
in this case,
$\phi (a_i)=a_i^{(q-1)/2}=1$
for each
$a_i\in U_k$
. Let g be a generator of the cyclic group
$\mathbb {F}_q^{\times }$
. By the above, one can verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu45.png?pub-status=live)
The last equality follows from
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu46.png?pub-status=live)
By the above and using the properties of determinants, one can verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn13.png?pub-status=live)
For
$0\le i\le k-1$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu47.png?pub-status=live)
We claim that
$b_i=b_{k-i}$
for
$1\le i\le k-1$
. In fact, for
$1\le i\le k-1$
, noting that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu48.png?pub-status=live)
one can verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu49.png?pub-status=live)
Hence, by (3.1),
$\det D_k=\det C(b_0,b_1,\ldots ,b_{k-1})$
. Now by Lemma 3.2 and (3.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn14.png?pub-status=live)
for some
$v\in \mathbb {F}_q$
. Now we consider the sum
$\sum _{i=0}^{k-1}b_i$
. It is easy to verify that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn15.png?pub-status=live)
Now by Lemma 3.1, since
$2\nmid k$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu50.png?pub-status=live)
Applying this and Lemma 3.1 to (3.3) and noting that
$-1/n=k$
in
$\mathbb {F}_p$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn16.png?pub-status=live)
Suppose that
$D_k$
is nonsingular. Then by Theorem 1.4, we have
$\det D_k\in \mathbb {F}_p^{\times }$
. Hence, by (3.2) and (3.4),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu51.png?pub-status=live)
This completes the proof.
4 Proof of Theorem 1.7
It is clear that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqn17.png?pub-status=live)
The last equality follows from
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu52.png?pub-status=live)
Let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu53.png?pub-status=live)
with
$\deg (g_k)\le k-1$
. Then by (4.1), Lemma 2.1 and the definition of trinomial coefficients,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20241001214735640-0335:S0004972724000303:S0004972724000303_eqnu54.png?pub-status=live)
The last equality follows from Lemma 2.2. This completes the proof.
$\Box $
Acknowledgement
We would like to thank the referee for helpful comments.