Article contents
ON DEFICIENT-PERFECT NUMBERS
Published online by Cambridge University Press: 23 May 2014
Abstract
For a positive integer $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}n$, let $\sigma (n)$ denote the sum of the positive divisors of $n$. Let $d$ be a proper divisor of $n$. We call $n$ a deficient-perfect number if $\sigma (n) = 2n - d$. In this paper, we show that there are no odd deficient-perfect numbers with three distinct prime divisors.
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 90 , Issue 2 , October 2014 , pp. 186 - 194
- Copyright
- Copyright © 2014 Australian Mathematical Publishing Association Inc.
References
- 4
- Cited by