Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T02:18:58.979Z Has data issue: false hasContentIssue false

On approximation of continuously differentiable functions by positive linear operators

Published online by Cambridge University Press:  17 April 2009

Heinz H. Gonska
Affiliation:
Rensselaer Polytechnic Institute, Department of Mathematical Sciences, Troy, New York, USA 12181 and University of Duisburg, Department of Mathematics, D-4100 Duisburg 1, West Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this note is to prove a theorem on the pointwise degree of approximation of continuously differentiable functions by positive linear operators. As can be seen from the applications to Bernstein and Hermite-Fejér operators, our inequality yields better constants and sometimes even a higher degree of approximation than the known general results.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

[1]Амелъкович, B.Γ. [Amel'kovič, V.G.], “О лорядке лриближения нелрерывных функцнй интерполяционными полиномами Фейера–Эрмнта” [On the order of approximation of continuous functions by Fejér-Hermite interpolation polynomials”, Polytechn. Inst. Odessa Naučn. Zap. 34 (1961), 7077.Google Scholar
[2]Bernstein, S., “Déemonstration du théoreme de Weierstrass, fondée sur le calcul des probabilitiés”, Charkow Ges. (2) 13 (1912), 12.Google Scholar
[3]Censor, Erga, “Quantitative results for positive linear approximation operators”, J. Approx. Theory 4 (1971), 442450.CrossRefGoogle Scholar
[4]DeVore, Ronald A., The approximation of continuous functions by positive linear operators (Lecture Notes in Mathematics, 293. Springer-Verlag, Berlin, Heidelberg, New York, 1972).CrossRefGoogle Scholar
[5]Fejér, Leopold, “Ueber Interpolation”, Nachr. Ges. Wissensch. Göttingen (1916), 6691.Google Scholar
[6]Gonska, Heinz Herbert, “Quantitative Aussagen zur Approximation durch positive lineare Operatoren” (Dissertation, Universität Duisburg, 1979).Google Scholar
[7]Gonska, Heinz H. and Meier, Jutta, “On approximation by Bernstein type operators: best constants”, submitted.Google Scholar
[8]Goodenough, S.J. and Mills, T.M., “A new estimate for the approximation of functions by Hermite-Fejér interpolation polynomials”, J. Approx. Theory 31 (1981), 253260.CrossRefGoogle Scholar
[9]МаМедов, P.Γ. [Mamedov, R.G.], “О порядке приближений функций линейными положительными опеоаторами” [On the order of approximation of functions by linear positive operators], Dokl. Akad. Nauk SSSR 128 (1959), 674676.Google Scholar
[10]Meier, Jutta, “Zur Verallgemeinerung eines Satzes von Censor und DeVore”, submitted.Google Scholar
[11]Минькова, P.M. [Min'kova, R.M.], “Сходимостъ произволных линейных операторов”,[Convergence of the derivatives of linear operators], Izv. Vysš. Učebn. Zaved. Matematika (1976), no. 8, 5259.Google ScholarPubMed
[12]Mond, B., “On the degree of approximation by linear positive operators”, J. Approx. Theory 18 (1976), 304306.CrossRefGoogle Scholar
[13]Mond, B. and Vasudevan, R., “On approximation by linear positive operators”, J. Approx. Theory 30 (1980), 334336.CrossRefGoogle Scholar
[14]Popoviciu, Tiberiu, “Asupra demonstratiei teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare”, Lucraˇrile sesiunii generale ştiinţifice, 212 iunie 1950, 1664–1667 (Editura Academiei Republicii Populare Române, Bucuresti, 1951).Google Scholar
[15]Schurer, F. and Steutel, F.W., “On the degree of approximation of functions in C 1[0, 1] by Bernstein polynomials” (T.H. Report 75-WSK-07. Onderafdeling der Wiskunde, Technische Hogeschool Eindhoven, The Netherlands, 1975).Google Scholar
[16]Schurer, F. and Steutel, F.W., “The degree of local approximation of functions in C [0, 1] by Bernstein polynomials”, J. Approx. Theory 19 (1977), 6982.CrossRefGoogle Scholar
[17]Shisha, O. and Mond, B., “The degree of convergence of sequences of linear positive operators”, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 11961200.CrossRefGoogle ScholarPubMed