No CrossRef data available.
Published online by Cambridge University Press: 17 April 2009
Let Mn and N2n−2 be smooth, connected manifolds of dimension n and 2n − 2 respectively with n ≡ 2 mod 4 and 6 ≤ n ≤ 26. Let f: Mn → N2n−2 be a continuous map. Under certain suitable conditions on the stable normal bundle of f, we give a direct and simpler proof that f is homotopic to an immersion. For the case 6 ≤ n ≤ 26 and n ≠ 18, the result was proved by Li-Banghe and Peterson by using non-stable obstruction theory and their earlier result.