Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T14:36:56.363Z Has data issue: false hasContentIssue false

On a subclass of Bazilevic functions

Published online by Cambridge University Press:  17 April 2009

M.M. Elhosh
Affiliation:
Department of MathematicsUniversity College of Wales, Aberystwyth, Dyfed, Wales, SY23 3BZUnited Kingdom.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Integral mean and coefficient bounds for some Bazilevic functions are determined.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]de Branges, L., ‘A proof of the Bieberbach conjecture’, Acta. Math. 154 (1985), 137152.CrossRefGoogle Scholar
[2]Duren, P.L., Univalend Functions (Springer-Verlag, New York, 1985).Google Scholar
[3]Eenigenburg, P.J., Miller, S.S., Mocanu, P.T. and Reade, M.O., ‘On a subclass of Bazilevic functions’, Proc. Amer. Math. Soc. 45 (1974), 8892.Google Scholar
[4]Girela, D., ‘Integral means and BMOA—norms of logarithms of univalent functions’, J. London Math. Soc. (2) 33 (1986), 117132.CrossRefGoogle Scholar
[5]Goodman, A.W., Univalent Functions, 2 (Mariner Pub. Co., Tampa, Florida, 1983).Google Scholar
[6]Keogh, F.R. and Miller, S.S., ‘On the coefficients of Bazilevic functions’, Proc. Amer. Math. Soc. 30 (1971), 492496.Google Scholar
[7]Leach, R., ‘The coefficients problem for Bazilevic functions’, Houston H. Math. (6) 4 (1980), 543547.Google Scholar
[8]Leung, Y.J., ‘Integral means of the derivatives of some univalent functions’, Bull. London Math. Soc. 11 (1979), 289294.CrossRefGoogle Scholar
[9]Robinson, R., ‘On the theory of univalent functions’, Ann. of Math. 37 (1936), 374408.Google Scholar
[10]Shiel-Small, T., ‘Coefficients and integral means of some classes of analytic functions’, Proc. Amer. Math. Soc. 82 (1983), 275282.CrossRefGoogle Scholar