Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T22:17:10.522Z Has data issue: false hasContentIssue false

Numerical procedures for Volterra integral equations

Published online by Cambridge University Press:  17 April 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Abstracts of Australasian PhD Theses
Copyright
Copyright © Australian Mathematical Society 1973

References

Anderssen, R.S., de Hoog, F.R. and Weiss, R., “On the numerical solution of Brownian motion processes”, J. Appl. Probability (to appear).Google Scholar
de Hoog, F.R. and Weiss, R., “Implicit Runge-Kutta methods for second kind Volterra integral equations”, submitted.Google Scholar
de Hoog, F.R. and Weiss, R., “On the solution of Volterra integral equations of the first kind”, Numer. Math. (to appear).Google Scholar
Hoog, F.R. de and Weiss, R., “High order methods for Volterra integral equations of the first kind”, SIAM J. Numer. Anal. (to appear).Google Scholar
Weiss, Richard, “Product integration for the generalized Abel equation”, Math. Comp. 26 (1972), 177190.CrossRefGoogle Scholar
Weiss, R. and Anderssen, R.S., “A product integration method for a class of singular first kind Volterra equations”, Numer. Math. 18 (1972), 442456.CrossRefGoogle Scholar