Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T05:37:29.164Z Has data issue: false hasContentIssue false

A note on the omega lemma

Published online by Cambridge University Press:  17 April 2009

Sadayuki Yamamuro
Affiliation:
Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A class of locally convex spaces, a B-subfamily of finite order, is defined and the omega lemma for spaces belonging to this family is proved.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

[1]Abraham, R., Lectures of Smale on differential topology (Columbia University, New York, 1962).Google Scholar
[2]Fischer, H.R., “Differentialrechnung in lokalkonvexen Räumen und Mannigfaltigkeiten von Abbildungenn” (Manuskripte d. Fakultät für Math, und Informatik, Univ. Mannheim, Mannheim [1977]).Google Scholar
[3]Gel'fand, I.M. and Shilov, G.E., Generalized functions. Volume 2. Spaces of fundamental and generalized functions (translated by Friedman, Morris D., Feinstein, Amiel, Peltzer, Christian P.. Academic Press, New York and London, 1968).Google Scholar
[4]Gutknecht, Jürg, “Die -Struktur auf der Diffeomorphismengruppe einer kompakten Mannigfaltigkeit” (Doctoral Dissertation, Eidgenössische Technische Hochschule, Zürich, 1977).Google Scholar
[5]Keller, H.H., Differential calculus in locally convex spaces (Lecture Notes in Mathematics, 417. Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[6]Omori, Hideki, Infinite dimensional Lie transformation groups (Lecture Notes in Mathematics, 427. Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[7]Yamamuro, Sadayuki, Differential calculus in topological linear spaces (Lecture Notes in Mathematics, 374. Springer-Verlag, Berlin, Heidelberg, New York, 1974).CrossRefGoogle Scholar
[8]Yamamuro, Sadayuki, A theory of differentiation in locally convex spaces (Memoirs of the American Mathematical Society, 212. American Mathematical Society, Providence, Rhode Island, 1979).Google Scholar
[9]Yamamuro, Sadayuki, “A note on Omori-Lie groups”, Bull. Austral. Math. Soc. 19 (1978), 333349 (1979).CrossRefGoogle Scholar