Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T08:42:35.765Z Has data issue: false hasContentIssue false

A note on the least quadratic non-residue of the integer-sequences

Published online by Cambridge University Press:  17 April 2009

M. Z. Garaev
Affiliation:
Instituto de Matemáticas UNAM, Campus Morelia, Apartado Postal 27-3 (Xangari), C.P. 58089, Morelia, Michoacán, Mexico e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider the problem of an upper bound estimate for the least quadratic non-residue modulo prime number on special arithmetic sequences such as f(n) = [αn] and f(n) = [nc].

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Burgess, D. A., ‘The distribution of quadratic residues and non-residues’, Mathematika 4 (1957), 106112.CrossRefGoogle Scholar
[2]Gashkov, S.B. and Chubarikov, V.N., Arithmetics. Algorithms. Complexity of computations, (in Russian) (Visshaya Shkola, Moscow, 2000).Google Scholar
[3]Khintchine, A. Ya., Continued fractions (P. Noordhoff Ltd. Groningen, The Netherlands, 1963).Google Scholar
[4]Karatsuba, A.A., Basic analytic number theory (Springer-Verlag, Berlin, Heidelberg, New York, 1993).Google Scholar
[5]Karatsuba, A.A. and Voronin, S.M., The Riemann Zeta-function (Walter de Gruyter, Berlin, New York, 1992).CrossRefGoogle Scholar
[6]Pólya, G., ‘Über die Verteilung der quadratischen Reste und Nichtreste’, Göttinger Nachrichten (1918), 2129.Google Scholar
[7]Preobrazhenskii, S.N., ‘The least quadratic non-residue in an arithmetic sequence’, Mascow Univ. Math. Bull. 56 (2001), 4446.Google Scholar
[8]Preobrazhenskii, S.N., ‘Power non-residues modulo a prime number in a special entire-sequence’, Moscow Univ. Math. Bull. 56 (2001), 4142.Google Scholar
[9]Rankin, R.A., ‘Van der Corput's method and the theory of exponent pairs’, Quart. J. Math. (Oxford) 6 (1955), 147153.CrossRefGoogle Scholar
[10]Vinogradov, I.M., ‘Sur la distribution des résidus et des non-résidus des puissances’, Journal Physico-Math. Soc. Univ. Perm 1 (1918), 9496.Google Scholar
[11]Schmidt, W.M., Equations over finite fields, Lecture Notes in Math. 536 (Springer-Verlag, Berlin, New York, 1976).Google Scholar
[12]Weil, A., ‘On some exponential sums’, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204207.CrossRefGoogle ScholarPubMed