Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T02:20:34.995Z Has data issue: false hasContentIssue false

A note on Fréchet and approximate subdifferentials of composite functions

Published online by Cambridge University Press:  17 April 2009

A. Jourani
Affiliation:
Université de Bourgogne, Laboratoire d'Analyse NumériqueB.P. 138-21004 - Dijon Cedex, France
L. Thibault
Affiliation:
Université Montpellier II, Dept. des Sciences Mathématiques, 34095 - Montpellier Cedex 5, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this note is to present in the reflexive Banach space setting a natural and simple proof of the formula of the approximate subdifferential of a composite function.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Clarke, F.H., Optimization and nonsmooth analysis (Wiley-Interscience, New York, 1983).Google Scholar
[2]Diestel, J., Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics 485 (Springer Verlag, New York, 1975).Google Scholar
[3]Abdouni, B. El and Thibault, L., ‘Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces’, Optimization 26 (1992), 277285.CrossRefGoogle Scholar
[4]Glover, B.M. and Craven, B.D., ‘A Fritz John optimality condition using the approximate subdifferential’, Preprint (1992).Google Scholar
[5]loffe, A.D., ‘Approximate subdifferentials and applications 3: Metric theory’, Mathematika 36 (1989), 138.Google Scholar
[6]Ioffe, A.D., ‘Proximal analysis and aproximate subdifferentials’, J. London Math. Soc. 41 (1990), 175192.Google Scholar
[7]Jourani, A. and Thibault, L., ‘Approximations and metric regularity in mathematical programming in Banach space’, Math. Oper. Res. 18 (1993), 390401.CrossRefGoogle Scholar
[8]Jourani, A. and Thibault, L., ‘The approximate subdifferentials of composite functions’, Bull. Austral. Math. Soc. 47 (1993), 443455.CrossRefGoogle Scholar
[9]Kruger, A.Ya., ‘Properties of generalized differentials’, Siberian Math. J. 26 (1985), 5466.Google Scholar
[10]Kruger, A.Ya. and Mordukhovich, B.S., ‘Extreme points and the Euler equations in non-differentiable optimization problems’, Dokl. Akad. Nauk. BSSR 24 (1980), 684687.Google Scholar
[11]Mordukhovich, B.S., ‘Maximum principle in the optimal time control problem with nonsmooth constraints’, J. Appl. Math. Mech. 40 (1976), 960969.CrossRefGoogle Scholar
[12]Thibault, L., ‘Subdifferential of compactly lipschitzian vector-valued functions’, Travaux du séminaire d'analyse convexe 8 (1978), Fascicule I. Montpellier.Google Scholar