Published online by Cambridge University Press: 15 May 2014
For a discrete abelian cancellative semigroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$ with a weight function $\omega $ and associated multiplier semigroup $M_\omega (S)$ consisting of $\omega $-bounded multipliers, the multiplier algebra of the Beurling algebra of $(S,\omega )$ coincides with the Beurling algebra of $M_\omega (S)$ with the induced weight.