Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T02:53:13.281Z Has data issue: false hasContentIssue false

Multiple solutions for some Neumann problems in exterior domains

Published online by Cambridge University Press:  17 April 2009

Tsing-San Hsu
Affiliation:
Center for General Education, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan, e-mail: [email protected]
Huei-Li Lin
Affiliation:
Center for General Education, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we show that if q(x) satisfies suitable conditions, then the Neumann problem -Δu+u = q(x)Ⅰup−2u in Ω has at least two solutions of which one is positive and the other changes sign.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Bahri, A. and Li, Y.Y., ‘On the min-max procedure for the existence of a positive solution for certain scalar field equations in ℝN’, Rev. Mat. Iberoamericana 6 (1990), 115.CrossRefGoogle Scholar
[2]Bahri, A. and Lions, P.L., ‘On the existence of a positive solution of semilinear elliptic equations in unbounded domains’, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 365413.CrossRefGoogle Scholar
[3]Cao, D.M., ‘Multiple solutions for a Neumann problem in an exterior domain’, Commun. Partial Differential Equations 18(1993), 687700.CrossRefGoogle Scholar
[4]Chen, K.J., Lee, C.S. and Wang, H.C., ‘Semilinear elliptic problems in interior and exterior flask domains’, Comm. Appl. Nonlinear Anal. 5 (1998), 81105.Google Scholar
[5]Esteban, M.J., ‘Rupture de symétrie pour des problemes de Neumann surlinéaires dans des extérieurs’, Note C.R.A.S. 308 (1989) 281286.Google Scholar
[6]Esteban, M.J., ‘Nonsymmetric ground states of symmetric variational problems’, Comm. Pure Appl. Math. 44 (1991) 259274.CrossRefGoogle Scholar
[7]Gidas, B., Ni, W.M. and Nirenberg, L., ‘Symmetry and related properties via the maximum principle’, Comm. Math. Phys. 68 (1979), 209243.CrossRefGoogle Scholar
[8]Gidas, B., Ni, W.M. and Nirenberg, L., ‘Symmetry of positive solutions of nonlinear elliptic equations in ℝN’, in Math. Anal. Appl. part A, Advances in Math. Suppl. Studies 7A (Academic Press, New York, London, 1981), pp. 369402.Google Scholar
[9]Hsu, T.S. and Lin, H.L., ‘Multiple solutions of semilinear elliptic equations with Neumann boundary conditions’, (preprint).Google Scholar
[10]Kwong, M.K., ‘Uniqueness of positive solutions of Δu − u + u p = 0 in ℝNArch. Rational Mech. Anal. 105 (1989), 234266.CrossRefGoogle Scholar
[11]Lions, P.L., ’The concentration-compactness principle in the calculus of variations. The locally compact case. I and II’, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109145 and 223–283.CrossRefGoogle Scholar
[12]Lions, P.L., ‘Solutions of Hartree-Fock equations for Coulomb systems’, Math. Phys. 109 (1987), 3397.CrossRefGoogle Scholar
[13]Lions, P.L., On positive solutions of semilinear elliptic equations in unbounded domains, Math. Sci. Res. Inst. Publ. 13 (Springer-Verlarg, Berlin, 1988).Google Scholar
[14]Lions, P.L., Lagrange multipliers, Morse indices and compactness, Progr. Nonlinear Differential Equations Appl. (Birkhaüser Boston, Boston, 1990).CrossRefGoogle Scholar
[15]Tzeng, S.Y. and Wang, H.C., ‘On semilinear elliptic problems in exterior domains’, Dynam. Contin. Discrete Impuls. Systems 5 (1999), 237250.Google Scholar
[16]Zhu, X.P., ‘Multiple entire solutions of a semilinear elliptic equation’, Nonlinear Anal. 12 (1988), 12971316.CrossRefGoogle Scholar