Article contents
THE MINIMAL GROWTH OF A $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}k$-REGULAR SEQUENCE
Published online by Cambridge University Press: 22 May 2014
Abstract
We determine a lower gap property for the growth of an unbounded $\mathbb{Z}$-valued $k$-regular sequence. In particular, if $f:\mathbb{N}\to \mathbb{Z}$ is an unbounded $k$-regular sequence, we show that there is a constant $c>0$ such that $|f(n)|>c\log n$ infinitely often. We end our paper by answering a question of Borwein, Choi and Coons on the sums of completely multiplicative automatic functions.
MSC classification
- Type
- Research Article
- Information
- Bulletin of the Australian Mathematical Society , Volume 90 , Issue 2 , October 2014 , pp. 195 - 203
- Copyright
- Copyright © 2014 Australian Mathematical Publishing Association Inc.
References
- 12
- Cited by